Soft-NMS — Improving Object Detection with One Line of Code

帕斯卡(单位) 计算机科学 目标检测 管道(软件) 编码(集合论) 过程(计算) 对象(语法) 算法 人工智能 模式识别(心理学) 集合(抽象数据类型) 程序设计语言
作者
Navaneeth Bodla,Bharat Singh,Rama Chellappa,Larry S. Davis
标识
DOI:10.1109/iccv.2017.593
摘要

Non-maximum suppression is an integral part of the object detection pipeline. First, it sorts all detection boxes on the basis of their scores. The detection box M with the maximum score is selected and all other detection boxes with a significant overlap (using a pre-defined threshold) with M are suppressed. This process is recursively applied on the remaining boxes. As per the design of the algorithm, if an object lies within the predefined overlap threshold, it leads to a miss. To this end, we propose Soft-NMS, an algorithm which decays the detection scores of all other objects as a continuous function of their overlap with M. Hence, no object is eliminated in this process. Soft-NMS obtains consistent improvements for the coco-style mAP metric on standard datasets like PASCAL VOC2007 (1.7% for both R-FCN and Faster-RCNN) and MS-COCO (1.3% for R-FCN and 1.1% for Faster-RCNN) by just changing the NMS algorithm without any additional hyper-parameters. Using Deformable-RFCN, Soft-NMS improves state-of-the-art in object detection from 39.8% to 40.9% with a single model. Further, the computational complexity of Soft-NMS is the same as traditional NMS and hence it can be efficiently implemented. Since Soft-NMS does not require any extra training and is simple to implement, it can be easily integrated into any object detection pipeline. Code for Soft-NMS is publicly available on GitHub http://bit.ly/2nJLNMu.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whale完成签到,获得积分10
1秒前
希望天下0贩的0应助小胡采纳,获得10
2秒前
3秒前
悟空完成签到,获得积分10
3秒前
coco完成签到 ,获得积分10
5秒前
ZZW完成签到,获得积分10
5秒前
泛泛之交完成签到,获得积分10
6秒前
Lucas应助陈泮龙采纳,获得10
6秒前
7秒前
cold寒完成签到,获得积分10
9秒前
酷波er应助小天采纳,获得10
10秒前
Lucas应助Yuaner采纳,获得10
11秒前
11秒前
resetttttt完成签到 ,获得积分10
11秒前
SciGPT应助llllhh采纳,获得10
12秒前
12秒前
14秒前
15秒前
LingC完成签到,获得积分10
16秒前
PINKPIG完成签到,获得积分10
16秒前
16秒前
Cloud9发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
栖迟应助WANGCHU采纳,获得10
19秒前
Henwenwen6发布了新的文献求助10
19秒前
苍老的小孩关注了科研通微信公众号
20秒前
PINKPIG发布了新的文献求助10
20秒前
科研通AI6应助高兴白莲采纳,获得30
20秒前
nn完成签到 ,获得积分10
26秒前
26秒前
27秒前
zxl发布了新的文献求助30
27秒前
30秒前
高兴白莲完成签到,获得积分10
30秒前
Hello应助勇闯wof的CC采纳,获得10
30秒前
30秒前
MQ发布了新的文献求助10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4523910
求助须知:如何正确求助?哪些是违规求助? 3964819
关于积分的说明 12288841
捐赠科研通 3629024
什么是DOI,文献DOI怎么找? 1997025
邀请新用户注册赠送积分活动 1033526
科研通“疑难数据库(出版商)”最低求助积分说明 923132