佩多:嘘
共形矩阵
材料科学
有机太阳能电池
聚苯乙烯磺酸盐
能量转换效率
纳米技术
光电子学
印刷电子产品
柔性电子器件
有机电子学
墨水池
氧化铟锡
图层(电子)
复合材料
电气工程
晶体管
聚合物
电压
工程类
作者
Eloïse Bihar,Daniel Corzo,Tania C. Hidalgo,Diego Rosas Villalva,K. Saláma,Sahika Inal,Derya Baran
标识
DOI:10.1002/admt.202000226
摘要
Abstract Ultra‐lightweight solar cells have attracted enormous attention due to their ultra‐conformability, flexibility, and compatibility with applications including electronic skin or miniaturized electronics for biological applications. With the latest advancements in printing technologies, printing ultrathin electronics is becoming now a reality. This work offers an easy path to fabricate indium tin oxide (ITO)‐free ultra‐lightweight organic solar cells through inkjet‐printing while preserving high efficiencies. A method consisting of the modification of a poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) ink with a methoxysilane‐based cross‐linker (3‐glycidyloxypropyl)trimethoxysilane (GOPS)) is presented to chemically modify the structure of the electrode layer. Combined with plasma and solvent post‐treatments, this approach prevents shunts and ensures precise patterning of solar cells. By using poly(3‐hexylthiophene) along rhodanine‐benzothiadiazole‐coupled indacenodithiophene (P3HT:O‐IDTBR), the power conversion efficiency (PCE) of the fully printed solar cells is boosted up to 4.73% and fill factors approaching 65%. All inkjet‐printed ultrathin solar cells on a 1.7 µm thick biocompatible parylene substrate are fabricated with PCE reaching up to 3.6% and high power‐per‐weight values of 6.3 W g −1 . After encapsulation, the cells retain their performance after being exposed for 6 h to aqueous environments such as water, seawater, or phosphate buffered saline, paving the way for their integration in more complex circuits for biological systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI