Deep Learning of Imaging Phenotype and Genotype for Predicting Overall Survival Time of Glioblastoma Patients

放射基因组学 卷积神经网络 磁共振成像 基因型 深度学习 胶质母细胞瘤 人工智能 神经影像学 计算机科学 机器学习 表型 脑瘤 医学影像学 个性化医疗 循环神经网络 人工神经网络 医学 生物信息学 放射科 病理 癌症研究 生物 基因 无线电技术 精神科 生物化学
作者
Zhenyu Tang,Yuqian Xu,Lei Jin,Abudumijiti Aibaidula,Junfeng Lu,Zhicheng Jiao,Jinsong Wu,Han Zhang,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 2100-2109 被引量:62
标识
DOI:10.1109/tmi.2020.2964310
摘要

Glioblastoma (GBM) is the most common and deadly malignant brain tumor. For personalized treatment, an accurate pre-operative prognosis for GBM patients is highly desired. Recently, many machine learning-based methods have been adopted to predict overall survival (OS) time based on the pre-operative mono- or multi-modal imaging phenotype. The genotypic information of GBM has been proven to be strongly indicative of the prognosis; however, this has not been considered in the existing imaging-based OS prediction methods. The main reason is that the tumor genotype is unavailable pre-operatively unless deriving from craniotomy. In this paper, we propose a new deep learning-based OS prediction method for GBM patients, which can derive tumor genotype-related features from pre-operative multimodal magnetic resonance imaging (MRI) brain data and feed them to OS prediction. Specifically, we propose a multi-task convolutional neural network (CNN) to accomplish both tumor genotype and OS prediction tasks jointly. As the network can benefit from learning tumor genotype-related features for genotype prediction, the accuracy of predicting OS time can be prominently improved. In the experiments, multimodal MRI brain dataset of 120 GBM patients, with as many as four different genotypic/molecular biomarkers, are used to evaluate our method. Our method achieves the highest OS prediction accuracy compared to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lianqing完成签到,获得积分10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
3秒前
RC_Wang应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
hh应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得30
3秒前
3秒前
Leif应助科研通管家采纳,获得20
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
忘羡222发布了新的文献求助20
6秒前
丰富猕猴桃完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
JamesPei应助咿咿呀呀采纳,获得10
7秒前
www完成签到,获得积分10
7秒前
科研通AI2S应助Jenny采纳,获得10
8秒前
limin完成签到,获得积分10
9秒前
9秒前
风格完成签到,获得积分10
10秒前
情怀应助专心搞学术采纳,获得20
11秒前
11秒前
zeke发布了新的文献求助10
11秒前
不爱吃糖发布了新的文献求助10
12秒前
852应助冷傲迎梦采纳,获得10
13秒前
陶醉觅夏发布了新的文献求助200
14秒前
14秒前
exile完成签到,获得积分10
15秒前
朱一龙发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824