Movie Recommendation System Using Semi-Supervised Learning

推荐系统 协同过滤 计算机科学 元数据 信息过载 人气 万维网 互联网 情报检索 简单(哲学) 多媒体
作者
Sushmita Roy,Mahendra Pal Sharma,Santosh Kumar Singh
出处
期刊:2019 Global Conference for Advancement in Technology (GCAT) 被引量:7
标识
DOI:10.1109/gcat47503.2019.8978353
摘要

In the current digital era, with the huge amount of technologies and tremendous amount of being available at disposal over the Internet, a huge amount of data is made available to users. This results in a condition known as information overload. Due to these, it is difficult for a person to search and access for taking decisions to arrive at an effective conclusion. To perorate this nut, there are filtering systems for information, known as the recommendation system or recommendation engine, considered here in paper, that help a person in identifying significant and possible services or products of interest based on the preferences given by him/her. This results in searching through lots of results to find the one that the user actually needs. This can be in cases like searching for books, music, videos, job postings, etc. A recommendation system is hence needed to help recommend items to users which are more relevant and accurate and fulfils the user’s needs and requirements. A movie recommendation system is used to recommend movies which match the user taste’s and preferences. Several approaches exist to implement this system – popularity-based recommendation system, simple recommendation system, content-based filtering, collaborative-based filtering, metadata-based filtering, demographic-based filtering approach. In this paper we use the following approaches – simple recommendation system, content-based filtering approach, collaborative-based filtering approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyer完成签到,获得积分10
刚刚
刚刚
11122发布了新的文献求助10
2秒前
英俊的铭应助无心的念蕾采纳,获得10
2秒前
斯文败类应助黑香菱采纳,获得10
3秒前
yyer发布了新的文献求助10
3秒前
羽墨空空发布了新的文献求助10
5秒前
sci完成签到 ,获得积分10
6秒前
延胡索完成签到,获得积分10
6秒前
林林林完成签到,获得积分10
9秒前
10秒前
10秒前
moodlunatic完成签到,获得积分10
10秒前
10秒前
10秒前
大模型应助11122采纳,获得10
12秒前
13秒前
A,w携念e行ོ完成签到,获得积分10
13秒前
xk完成签到,获得积分10
13秒前
11哥应助宇文雨文采纳,获得30
13秒前
gg发布了新的文献求助10
14秒前
现代青菜完成签到 ,获得积分10
15秒前
阳光明媚完成签到,获得积分10
15秒前
samifranco发布了新的文献求助10
16秒前
racill发布了新的文献求助30
17秒前
wcf发布了新的文献求助10
19秒前
充电宝应助小猪佩奇采纳,获得10
19秒前
19秒前
19秒前
CipherSage应助舒适路人采纳,获得10
20秒前
上官若男应助大气的山彤采纳,获得10
20秒前
21秒前
gg完成签到,获得积分10
21秒前
23秒前
山下梅子酒完成签到 ,获得积分10
23秒前
芯梓12发布了新的文献求助10
23秒前
25秒前
......发布了新的文献求助30
25秒前
pluto应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784142
求助须知:如何正确求助?哪些是违规求助? 3329244
关于积分的说明 10241014
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671268
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759250