亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SCA-CDNet: a robust siamese correlation-and-attention-based change detection network for bitemporal VHR images

计算机科学 过度拟合 变更检测 熵(时间箭头) 人工智能 交叉熵 数据挖掘 相关性 模式识别(心理学) 人工神经网络 机器学习 数学 几何学 量子力学 物理
作者
Shiyan Pang,Anran Zhang,Jingjing Hao,Fengzhu Liu,Jia Chen
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:43 (15-16): 6102-6123 被引量:11
标识
DOI:10.1080/01431161.2021.1941390
摘要

Change detection is a key step in various geographic information applications such as land cover change monitoring, agricultural assessment, natural disaster evaluation, and illegal building investigation. In practice, discovering, or outlining these changes is labour intensive and time-consuming. To address this problem, a novel end-to-end Siamese correlation-and-attention-based change detection network (SCA-CDNet) is proposed for bitemporal very-high-resolution images in this paper. In this method, five strategies are adopted to improve the final change detection results. First, data augmentation is used to reduce the overfitting effectively and improve the generalization ability of the training model. Second, in encoding, classic networks (e.g. ResNet) are introduced to extract the multiscale features of the image and make full use of the existing pretraining weights of the network to reduce the difficulty of subsequent model training. Third, a new correlation module is designed to stack the above bitemporal features correspondingly and extract change features with smaller dimensions. Fourth, an attention model is introduced between the correlation module and the decoder module to make the network pay more attention to areas or channels with a greater effect on change analysis. Fifth, a new weighted cross-entropy loss function is designed, which enables training to focus on error detection and improve the final accuracy of the training model. Finally, extensive experimental results on three public data sets including the evaluation of data augmentation, ablation study, and comparison with the state of the art demonstrate the effectiveness and superiority of our proposed method, achieving an intersection of union (IoU) of 84.15%, 83.50%, and 77.29% on the three data sets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司徒寒烟发布了新的文献求助10
11秒前
12秒前
乐乐应助小白采纳,获得10
12秒前
griffon完成签到,获得积分10
29秒前
iu1392发布了新的文献求助10
34秒前
快乐的不二法门完成签到,获得积分10
39秒前
39秒前
胡国伦完成签到 ,获得积分10
42秒前
SSS完成签到,获得积分10
49秒前
50秒前
Jenny712完成签到,获得积分10
52秒前
真真完成签到 ,获得积分10
54秒前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
tszjw168完成签到 ,获得积分10
1分钟前
1分钟前
祭酒完成签到 ,获得积分10
1分钟前
科研通AI2S应助iu1392采纳,获得10
1分钟前
汪鸡毛完成签到 ,获得积分10
1分钟前
神勇颜发布了新的文献求助10
1分钟前
尕尕娃娃328完成签到 ,获得积分10
1分钟前
1分钟前
欣慰妙海完成签到 ,获得积分10
1分钟前
冷酷果汁发布了新的文献求助10
1分钟前
阿哲完成签到 ,获得积分10
1分钟前
大模型应助good猫妮采纳,获得10
1分钟前
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
2分钟前
晓书完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
good猫妮发布了新的文献求助10
2分钟前
芷兰丁香完成签到,获得积分10
2分钟前
哈哈哈完成签到,获得积分10
2分钟前
iu1392发布了新的文献求助10
2分钟前
优秀的易文完成签到,获得积分10
2分钟前
萧瑟处完成签到,获得积分10
2分钟前
wanci应助科研通管家采纳,获得10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798450
求助须知:如何正确求助?哪些是违规求助? 3343875
关于积分的说明 10317895
捐赠科研通 3060562
什么是DOI,文献DOI怎么找? 1679604
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763296