生物
小RNA
竞争性内源性RNA
体内
癌症研究
环状RNA
核糖核酸
胰腺导管腺癌
体外
原位杂交
基因表达
腺癌
内生
荧光原位杂交
胰腺癌
基因
癌症
长非编码RNA
遗传学
生物化学
染色体
作者
Zeyin Rong,Si Shi,Zhen Tan,Jin Xu,Qingcai Meng,Jie Hua,Jiang Liu,Bo Zhang,Wei Wang,Xianjun Yu,Chen Liang
标识
DOI:10.1186/s12943-021-01400-z
摘要
Extensive studies have demonstrated the pivotal roles of circular RNAs (circRNAs) in the occurrence and development of different human cancers. However, the expression and regulatory roles of circRNAs in pancreatic ductal adenocarcinoma (PDAC) are unclear.CircEYA3 was explored based on Gene Expression Omnibus (GEO) dataset analysis. qRT-PCR was applied to determine the expression of circRNAs, miRNAs and mRNAs in PDAC cells and tissues. The biological roles of circEYA3 in vitro and in vivo were determined by performing a series of functional experiments. Further, dual luciferase reporter, fluorescence in situ hybridization (FISH), RNA pull-down assays, and RNA immunoprecipitation (RIP) assays were used to confirm the interaction of circEYA3 with miR-1294.CircEYA3 was elevated in PDAC tissues and cells, and a higher level of circEYA3 was significantly associated with a poorer prognosis in patients with PDAC. Functionally, circEYA3 increased energy production via ATP synthesis to promote PDAC progression in vitro and in vivo. Mechanistically, circEYA3 functions as an endogenous miR-1294 sponge to elevate c-Myc expression, thus exerting its oncogenic functions.CircEYA3 promotes the progression of PDAC through the miR-1294/c-Myc signalling axis, and circEYA3 may be an efficient molecular therapeutic target in PDAC.
科研通智能强力驱动
Strongly Powered by AbleSci AI