Study on the use of standard 12-lead ECG data for rhythm-type ECG classification problems

铅(地质) 人工智能 计算机科学 残差神经网络 模式识别(心理学) 深度学习 提前期 试验数据 数据挖掘 机器学习 工程类 运营管理 地貌学 地质学 程序设计语言
作者
Junsang Park,Junho An,Jinkook Kim,Sunghoon Jung,Yeongjoon Gil,Yoojin Jang,Kwanglo Lee,Il‐Young Oh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:214: 106521-106521 被引量:35
标识
DOI:10.1016/j.cmpb.2021.106521
摘要

Most deep-learning-related methodologies for electrocardiogram (ECG) classification are focused on finding an optimal deep-learning architecture to improve classification performance. However, in this study, we proposed a methodology for fusion of various single-lead ECG data as training data in the single-lead ECG classification problem.We used a squeeze-and-excitation residual network (SE-ResNet) with 152 layers as the baseline model. We compared the performance of a 152-layer SE-ResNet trained on ECG signals from various leads of a standard 12-lead ECG system to that of a 152-layer SE-ResNet trained on only single-lead ECG data with the same lead information as the test set. The experiments were performed using five different types of rhythm-type single-lead ECG data obtained from Konkuk University Hospital in South Korea.Experiment results based on the combination from the relationship experiments of the leads showed that lead -aVR or II revealed the best classification performance. In case of -aVR, this model achieved a high F1 score for normal (98.7%), AF (98.2%), APC (95.1%), and VPC (97.4%), indicating its potential for practical use in the medical field.We concluded that the 152-layer SE-ResNet trained by fusion of single-lead ECGs had better classification performance than the 152-layer SE-ResNet trained on only single-lead ECG data, regardless of the single-lead ECG signal type. We also found that the best performance directions for single-lead ECG classification are Lead -aVR and II.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
神猪发布了新的文献求助10
刚刚
徐昊雯发布了新的文献求助10
刚刚
15327432191完成签到 ,获得积分10
1秒前
圆圆圆完成签到,获得积分20
1秒前
1秒前
我是老大应助33采纳,获得10
1秒前
尹晓帅完成签到,获得积分20
2秒前
2秒前
2秒前
aaa完成签到,获得积分10
2秒前
2秒前
485613发布了新的文献求助10
3秒前
Satan发布了新的文献求助10
3秒前
3秒前
4秒前
陈肖楠发布了新的文献求助10
4秒前
无花果应助fwz采纳,获得10
4秒前
华仔应助zuhayr采纳,获得10
4秒前
4秒前
勿庸完成签到,获得积分10
5秒前
hsj发布了新的文献求助10
5秒前
圆圆圆发布了新的文献求助10
5秒前
6秒前
6秒前
米米发布了新的文献求助10
7秒前
7秒前
顾矜应助蕪菑采纳,获得10
9秒前
wmm完成签到,获得积分10
9秒前
9秒前
Cheng发布了新的文献求助10
10秒前
lan发布了新的文献求助10
10秒前
77完成签到,获得积分10
10秒前
LaTeXer重新开启了Crt文献应助
10秒前
淡然的静珊完成签到,获得积分10
10秒前
香蕉觅云应助Breathe采纳,获得10
11秒前
11秒前
11秒前
徐昊雯发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437