Evaluation of reconstructed auricles by convolutional neural networks

卷积神经网络 耳廓 人工智能 可视化 医学 计算机科学 模式识别(心理学) 计算机视觉 解剖
作者
Jiong Ye,Lei Chen,Zhenni Wei,Yuqi Wang,Houbing Zheng,Meishui Wang,Biao Wang
出处
期刊:Journal of Plastic Reconstructive and Aesthetic Surgery [Elsevier BV]
卷期号:75 (7): 2293-2301 被引量:6
标识
DOI:10.1016/j.bjps.2022.01.037
摘要

Abstract

The difficulty in determining which structures are crucial to ensure a natural-looking ear has been plaguing surgeons for many years. This preliminary study explores the feasibility of training convolutional neural network (CNN) models to evaluate a reconstructed auricle as accurate as a human would. By visualizing the attention of trained models, the criteria for the design of a natural-looking auricle can be established. A total of 400 pictures were evaluated by 20 volunteers, and 20 labeled datasets were generated, which were then used to train ResNet models that had been pre-trained on ImageNet. The saliency maps and occlusion maps of each trained model were calculated to capture the attention of models. The average accuracy of the 20 models was 0.8245 ± 0.0356 (>0.80), and the evaluation results of the trained model and the medical student showed a significant correlation (P < 0.05). For the attention visualization of auricles labeled as normal, distribution of the highlighted portions corresponded to a linear contour of the helix, the inferior crura of the antihelix, and the contour of the concha. A CNN can provide an evaluation of a reconstructed auricle in a manner similar to that of a medical student. Saliency maps generated by the CNN demonstrate the subjective view, which was consistent with professional opinion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助10
刚刚
在水一方应助wwwww采纳,获得10
3秒前
4秒前
MeSs完成签到 ,获得积分10
5秒前
冯先生完成签到,获得积分10
6秒前
我爱读文献完成签到,获得积分10
6秒前
顾矜应助芋泥泥泥采纳,获得10
8秒前
9秒前
9秒前
冯先生发布了新的文献求助10
9秒前
ding应助tl采纳,获得10
10秒前
12秒前
吃花生酱的猫完成签到,获得积分10
13秒前
牧长一完成签到 ,获得积分0
15秒前
任伟超发布了新的文献求助10
15秒前
vayne发布了新的文献求助10
15秒前
Ansels发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
Akim应助冯先生采纳,获得10
19秒前
ding应助坚强的樱采纳,获得10
19秒前
自信的竹员外完成签到,获得积分10
20秒前
科目三应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
云川应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863271
求助须知:如何正确求助?哪些是违规求助? 3405664
关于积分的说明 10646046
捐赠科研通 3129322
什么是DOI,文献DOI怎么找? 1725868
邀请新用户注册赠送积分活动 831261
科研通“疑难数据库(出版商)”最低求助积分说明 779682