Multiscale Spatial Attention Network for Seismic Data Denoising

计算机科学 降噪 卷积神经网络 噪音(视频) 模式识别(心理学) 杠杆(统计) 人工智能 卷积(计算机科学) 比例(比率) 核(代数) 人工神经网络 数学 量子力学 组合数学 图像(数学) 物理
作者
Xintong Dong,Jun Lin,Shaoping Lu,Hongzhou Wang,Yue Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:24
标识
DOI:10.1109/tgrs.2022.3178212
摘要

Seismic background noise often damages the desired signals, thereby resulting in some artifacts in the seismic imaging that follows. Since about 2016, some supervised-deep-learning methods have shown impressive performance in seismic data denoising, but they usually only consider single-scale features and neglect the multi-scale strategy. To further reinforce their denoising performance, a novel multi-scale convolutional neural network (CNN) combined with spatial attention mechanism, called multi-scale spatial attention denoising network (MSSA-Net), is proposed to tell weak reflected signals apart from strong seismic background noise. Unlike conventional single-scale CNNs, this proposed MSSA-Net can achieve the extraction of multi-scale features which is beneficial for the suppression of strong noise and the recovery of weak reflected signals. Specifically, MSSA-Net contains a principal denoising network and two auxiliary networks. The former utilizes the widen convolution composed of multiple parallel convolution layers with different kernel sizes to capture the informative multi-scale features; the latter two leverage up and down sampling to extract local fine and global coarse features, respectively. Furthermore, a spatial attention block is adopted to fuse these multi-scale features, thereby distinguishing weak reflected signals from strong seismic background noise. Multiple experiments of synthetic and real seismic records demonstrate the effectiveness of MSSA-Net. In addition, compared with two classical single-scale CNNs, MSSA-Net performs better in signal recovery, indicating the positive effect of multi-scale strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熹熹完成签到,获得积分10
1秒前
supertkeb应助阳光的卿采纳,获得10
2秒前
meini发布了新的文献求助10
2秒前
小马想毕业完成签到,获得积分10
2秒前
ZhiningZ完成签到 ,获得积分10
3秒前
科研牛马完成签到,获得积分10
4秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得100
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Auston_zhong应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
9秒前
9秒前
外向的妍完成签到,获得积分10
12秒前
12秒前
殷勤的紫槐发布了新的文献求助200
12秒前
天麟发布了新的文献求助10
12秒前
乐乐应助Lll采纳,获得10
13秒前
Wang发布了新的文献求助10
14秒前
16秒前
中科路2020完成签到,获得积分10
17秒前
缥缈的绿兰完成签到,获得积分10
18秒前
18秒前
陌上花开完成签到,获得积分20
20秒前
菜热热完成签到,获得积分10
21秒前
Lll完成签到,获得积分20
22秒前
陌上花开发布了新的文献求助10
22秒前
Catherine_Song完成签到 ,获得积分10
23秒前
司忆完成签到 ,获得积分10
24秒前
外向的沛柔完成签到,获得积分20
24秒前
猴子发布了新的文献求助10
24秒前
研友_GZbV4Z完成签到,获得积分10
26秒前
27秒前
PG完成签到 ,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761774
求助须知:如何正确求助?哪些是违规求助? 3305540
关于积分的说明 10134658
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791989
科研通“疑难数据库(出版商)”最低求助积分说明 754751