Cross-sensor domain adaptation for high spatial resolution urban land-cover mapping: From airborne to spaceborne imagery

遥感 土地覆盖 计算机科学 规范化(社会学) 域适应 杠杆(统计) 比例(比率) 图像分辨率 人工智能 计算机视觉 土地利用 地理 地图学 社会学 土木工程 工程类 分类器(UML) 人类学
作者
Junjue Wang,Ailong Ma,Yanfei Zhong,Zhuo Zheng,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:277: 113058-113058 被引量:24
标识
DOI:10.1016/j.rse.2022.113058
摘要

Urban land-cover information is essential for resource allocation and sustainable urban development. Recently, deep learning algorithms have shown promising results in land-cover mapping with high spatial resolution (HSR) imagery. However, the limitation of the annotation and the divergence of the multi-sensor images always challenge the transferability of deep learning, thus hindering city-level or national-level mapping. In this paper, we propose a scheme to leverage small-scale airborne images with labels (source) for unlabeled large-scale spaceborne image (target) classification. Considering the sensor characteristics, a Cross-Sensor Land-cOVEr framework, called LoveCS, is introduced to address the difficulties of the spatial resolution inconsistency and spectral differences. As for the structural design, cross-sensor normalization is proposed to automatically learn sensor-specific normalization weights, thereby narrowing the spectral differences hierarchically. Furthermore, a dense multi-scale decoder is proposed to effectively fuse the multi-scale features from different sensors. As for the model optimization, self-training domain adaptation is adopted, and multi-scale pseudo-labeling is proposed to reduce the scale divergence brought by the spatial resolution inconsistency. The effectiveness of LoveCS was tested on data from the three cities of Nanjing, Changzhou, and Wuhan in China. The comprehensive results all show that LoveCS is superior to the existing domain adaptation methods in cross-sensor tasks, and has good generalizability. Compared with the existing land-cover products, the obtained results have the highest accuracy and spatial resolution (1.0 m). Overall, LoveCS provides a new perspective for large-scale land-cover mapping based on limited HSR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJM完成签到,获得积分10
刚刚
高圆圆完成签到,获得积分10
刚刚
HEIKU应助纪鹏飞采纳,获得10
6秒前
Xu关注了科研通微信公众号
8秒前
9秒前
东邪西毒加任我行完成签到,获得积分10
11秒前
bc应助rrrrroxie采纳,获得40
12秒前
Sunshine完成签到,获得积分10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
CipherSage应助刘搞笑采纳,获得10
14秒前
15秒前
Aries完成签到 ,获得积分10
19秒前
犹豫紫丝发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
tier3完成签到,获得积分10
26秒前
26秒前
我以為忘了想念完成签到 ,获得积分10
27秒前
helly完成签到,获得积分10
28秒前
28秒前
29秒前
ariaooo完成签到,获得积分10
30秒前
30秒前
31秒前
liu发布了新的文献求助10
32秒前
科研通AI2S应助默默忆山采纳,获得10
35秒前
sure发布了新的文献求助10
35秒前
Orange应助liu采纳,获得10
36秒前
奋斗的荆发布了新的文献求助10
37秒前
zjw发布了新的文献求助10
37秒前
顺利的丹妗完成签到,获得积分10
39秒前
LWJ完成签到 ,获得积分10
44秒前
45秒前
在水一方应助甜美无剑采纳,获得10
47秒前
chen发布了新的文献求助10
47秒前
骨科小手完成签到,获得积分10
47秒前
机灵的雁蓉完成签到 ,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415