亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image Regression With Structure Cycle Consistency for Heterogeneous Change Detection

计算机科学 变更检测 人工智能 模式识别(心理学) 一致性(知识库) 回归 图像(数学) 回归分析 数据挖掘 数学 统计
作者
Yuli Sun,Lin Lei,Dongdong Guan,Junzheng Wu,Gangyao Kuang,Li Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (2): 1613-1627 被引量:26
标识
DOI:10.1109/tnnls.2022.3184414
摘要

Change detection (CD) between heterogeneous images is an increasingly interesting topic in remote sensing. The different imaging mechanisms lead to the failure of homogeneous CD methods on heterogeneous images. To address this challenge, we propose a structure cycle consistency-based image regression method, which consists of two components: the exploration of structure representation and the structure-based regression. We first construct a similarity relationship-based graph to capture the structure information of image; here, a $k$ -selection strategy and an adaptive-weighted distance metric are employed to connect each node with its truly similar neighbors. Then, we conduct the structure-based regression with this adaptively learned graph. More specifically, we transform one image to the domain of the other image via the structure cycle consistency, which yields three types of constraints: forward transformation term, cycle transformation term, and sparse regularization term. Noteworthy, it is not a traditional pixel value-based image regression, but an image structure regression, i.e., it requires the transformed image to have the same structure as the original image. Finally, change extraction can be achieved accurately by directly comparing the transformed and original images. Experiments conducted on different real datasets show the excellent performance of the proposed method. The source code of the proposed method will be made available at https://github.com/yulisun/AGSCC .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nuliguan完成签到 ,获得积分0
3秒前
归尘应助科研通管家采纳,获得10
23秒前
归尘应助科研通管家采纳,获得10
23秒前
归尘应助科研通管家采纳,获得10
24秒前
归尘应助科研通管家采纳,获得10
24秒前
归尘应助科研通管家采纳,获得10
24秒前
归尘应助科研通管家采纳,获得10
24秒前
44秒前
44秒前
鳗鱼依白发布了新的文献求助10
48秒前
小透明发布了新的文献求助10
50秒前
51秒前
1分钟前
1分钟前
Raven发布了新的文献求助10
1分钟前
领导范儿应助Raven采纳,获得10
1分钟前
1分钟前
1分钟前
我是老大应助siv采纳,获得10
2分钟前
小透明发布了新的文献求助10
2分钟前
2分钟前
2分钟前
siv发布了新的文献求助10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
Raven发布了新的文献求助10
2分钟前
彭于晏应助Raven采纳,获得10
2分钟前
2分钟前
CATH完成签到 ,获得积分10
3分钟前
3分钟前
赘婿应助Stark采纳,获得10
3分钟前
3分钟前
Raven发布了新的文献求助10
3分钟前
丘比特应助Raven采纳,获得10
3分钟前
3分钟前
4分钟前
clearsky应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
4分钟前
666pop发布了新的文献求助150
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682181
求助须知:如何正确求助?哪些是违规求助? 4057740
关于积分的说明 12545416
捐赠科研通 3753157
什么是DOI,文献DOI怎么找? 2072817
邀请新用户注册赠送积分活动 1101849
科研通“疑难数据库(出版商)”最低求助积分说明 981146