Accurate brain‐age models for routine clinical MRI examinations

医学 神经组阅片室 磁共振弥散成像 神经影像学 磁共振成像 核医学 放射科 神经学 精神科
作者
David A. Wood,Sina Kafiabadi,Ayisha Al Busaidi,Emily Guilhem,Antanas Montvila,Jeremy Lynch,Matthew Townend,Siddharth Agarwal,Asif Mazumder,Gareth J. Barker,Sébastien Ourselin,James H. Cole,Thomas C. Booth
出处
期刊:NeuroImage [Elsevier BV]
卷期号:249: 118871-118871 被引量:31
标识
DOI:10.1016/j.neuroimage.2022.118871
摘要

Convolutional neural networks (CNN) can accurately predict chronological age in healthy individuals from structural MRI brain scans. Potentially, these models could be applied during routine clinical examinations to detect deviations from healthy ageing, including early-stage neurodegeneration. This could have important implications for patient care, drug development, and optimising MRI data collection. However, existing brain-age models are typically optimised for scans which are not part of routine examinations (e.g., volumetric T1-weighted scans), generalise poorly (e.g., to data from different scanner vendors and hospitals etc.), or rely on computationally expensive pre-processing steps which limit real-time clinical utility. Here, we sought to develop a brain-age framework suitable for use during routine clinical head MRI examinations. Using a deep learning-based neuroradiology report classifier, we generated a dataset of 23,302 'radiologically normal for age' head MRI examinations from two large UK hospitals for model training and testing (age range = 18-95 years), and demonstrate fast (< 5 s), accurate (mean absolute error [MAE] < 4 years) age prediction from clinical-grade, minimally processed axial T2-weighted and axial diffusion-weighted scans, with generalisability between hospitals and scanner vendors (Δ MAE < 1 year). The clinical relevance of these brain-age predictions was tested using 228 patients whose MRIs were reported independently by neuroradiologists as showing atrophy 'excessive for age'. These patients had systematically higher brain-predicted age than chronological age (mean predicted age difference = +5.89 years, 'radiologically normal for age' mean predicted age difference = +0.05 years, p < 0.0001). Our brain-age framework demonstrates feasibility for use as a screening tool during routine hospital examinations to automatically detect older-appearing brains in real-time, with relevance for clinical decision-making and optimising patient pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDS发布了新的文献求助10
1秒前
搜集达人应助外向蜡烛采纳,获得10
3秒前
4秒前
5秒前
Suysheng完成签到,获得积分10
5秒前
李星翰完成签到,获得积分10
6秒前
酷波er应助DDS采纳,获得10
6秒前
华仔应助jecoups采纳,获得20
9秒前
林间发布了新的文献求助10
9秒前
QXS完成签到,获得积分20
9秒前
满怀完成签到,获得积分10
9秒前
10秒前
小章鱼完成签到,获得积分10
10秒前
12秒前
13秒前
弓纪世发布了新的文献求助10
14秒前
林间完成签到,获得积分10
15秒前
密码的论文完成签到,获得积分10
16秒前
李星翰发布了新的文献求助10
16秒前
yelis发布了新的文献求助10
17秒前
机灵柚子应助IHVHI采纳,获得10
17秒前
吴丹完成签到,获得积分10
18秒前
18秒前
yelis完成签到,获得积分10
21秒前
迷路语兰应助活泼的觅云采纳,获得10
21秒前
22秒前
稻草人发布了新的文献求助10
23秒前
23秒前
25秒前
7777777发布了新的文献求助10
26秒前
26秒前
26秒前
zhuuuuuuu发布了新的文献求助10
26秒前
26秒前
27秒前
29秒前
DDS发布了新的文献求助10
29秒前
HUAN发布了新的文献求助10
29秒前
西红柿发布了新的文献求助10
30秒前
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800411
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326420
捐赠科研通 3062122
什么是DOI,文献DOI怎么找? 1680875
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572