亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying coal mine safety production risk factors by employing text mining and Bayesian network techniques

煤矿开采 关联规则学习 危害 贝叶斯网络 生产(经济) 工程类 过程(计算) 风险评估 Apriori算法 数据挖掘 风险分析(工程) 计算机科学 人工智能 业务 计算机安全 废物管理 化学 宏观经济学 有机化学 经济 操作系统
作者
Shuang Li,Mengjie You,Dingwei Li,Jiao Liu
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:162: 1067-1081 被引量:114
标识
DOI:10.1016/j.psep.2022.04.054
摘要

Coal industry is a typical high-risk industry with frequent accidents. In an effort to ensure workers’ safety and health, and reduce the probability of productivity decrease, it is essential to identify the contributing factors of coal mine safety production risks through certain technical means. Accident cases, as a concentrated display of accident hazard source, are of great value in extracting key risk factors that may induce coal mine disasters. Therefore, this study creatively proposed an effective method combining text mining, association rule mining and Bayesian network to deeply mine and use the massive coal mine safety accident case text data, so as to achieve effective identification of coal mine safety risk factors and explore the mechanism of interaction between risk factors and their importance. The research main included three steps. First, due to the high uncertainty and difference in the way of expression of the coal mine accident report texts, the conventional text mining process cannot effectively identify the risk factors, resulting in the incompleteness and deviation of the risk factors list. This study improved the text mining process, through Chinese word segmentation, keyword extraction, related word mining, semantic analysis, etc. to mine the collected 726 reports, and identify 78 safety risk factors. Then, the Apriori algorithm was used to obtain the extremely frequent itemset of risk factors and 362 strong association rules, and constructed the Bayesian network model on this basis. Finally, six main risk factors of coal mine safety production and their associated-factors were clarified through sensitivity and critical path analysis. The study shows that compared with the risks caused by the environment and equipment, the lack of management, education, and supervision are the root cause of coal mine accidents. This research provides a new way of thinking for effectively extracting using information from unstructured and non-standardized texts, as well as a new perspective for data-driven safety risk factors identification and complex interaction mechanisms research, having a great significance for coal mine safety risk pre-control management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
靓丽的胜发布了新的文献求助10
14秒前
汉堡包应助靓丽的胜采纳,获得10
27秒前
28秒前
CC发布了新的文献求助10
32秒前
靓丽的胜完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
40秒前
在水一方应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得30
44秒前
华仔应助科研通管家采纳,获得10
44秒前
49秒前
务实书包发布了新的文献求助10
53秒前
57秒前
59秒前
dllneu发布了新的文献求助10
1分钟前
影月完成签到,获得积分10
1分钟前
瓶子发布了新的文献求助10
1分钟前
牛八先生完成签到,获得积分10
1分钟前
1分钟前
dllneu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ladette发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
关关完成签到 ,获得积分10
2分钟前
英俊的铭应助ladette采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ladette完成签到,获得积分20
2分钟前
里莫利亚沙鼠批发商完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
Cheung2121发布了新的文献求助30
3分钟前
康康完成签到 ,获得积分10
3分钟前
蚂蚁踢大象完成签到 ,获得积分10
3分钟前
Benhnhk21发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
瓶子发布了新的文献求助10
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4029464
求助须知:如何正确求助?哪些是违规求助? 3568339
关于积分的说明 11356194
捐赠科研通 3299409
什么是DOI,文献DOI怎么找? 1816686
邀请新用户注册赠送积分活动 890920
科研通“疑难数据库(出版商)”最低求助积分说明 813903