清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks

分割 卷积神经网络 计算机科学 人工智能 医学 体积热力学 结直肠癌 放射科 放射治疗计划 医学影像学 癌症 计算机断层摄影术 图像分割 放射治疗 内科学 物理 量子力学
作者
Kuo Men,Jianrong Dai,Ye‐Xiong Li
出处
期刊:Medical Physics [Wiley]
卷期号:44 (12): 6377-6389 被引量:284
标识
DOI:10.1002/mp.12602
摘要

Delineation of the clinical target volume (CTV) and organs at risk (OARs) is very important for radiotherapy but is time-consuming and prone to inter-observer variation. Here, we proposed a novel deep dilated convolutional neural network (DDCNN)-based method for fast and consistent auto-segmentation of these structures.Our DDCNN method was an end-to-end architecture enabling fast training and testing. Specifically, it employed a novel multiple-scale convolutional architecture to extract multiple-scale context features in the early layers, which contain the original information on fine texture and boundaries and which are very useful for accurate auto-segmentation. In addition, it enlarged the receptive fields of dilated convolutions at the end of networks to capture complementary context features. Then, it replaced the fully connected layers with fully convolutional layers to achieve pixel-wise segmentation. We used data from 278 patients with rectal cancer for evaluation. The CTV and OARs were delineated and validated by senior radiation oncologists in the planning computed tomography (CT) images. A total of 218 patients chosen randomly were used for training, and the remaining 60 for validation. The Dice similarity coefficient (DSC) was used to measure segmentation accuracy.Performance was evaluated on segmentation of the CTV and OARs. In addition, the performance of DDCNN was compared with that of U-Net. The proposed DDCNN method outperformed the U-Net for all segmentations, and the average DSC value of DDCNN was 3.8% higher than that of U-Net. Mean DSC values of DDCNN were 87.7% for the CTV, 93.4% for the bladder, 92.1% for the left femoral head, 92.3% for the right femoral head, 65.3% for the intestine, and 61.8% for the colon. The test time was 45 s per patient for segmentation of all the CTV, bladder, left and right femoral heads, colon, and intestine. We also assessed our approaches and results with those in the literature: our system showed superior performance and faster speed.These data suggest that DDCNN can be used to segment the CTV and OARs accurately and efficiently. It was invariant to the body size, body shape, and age of the patients. DDCNN could improve the consistency of contouring and streamline radiotherapy workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无一完成签到 ,获得积分10
14秒前
王jyk完成签到,获得积分10
18秒前
朝夕之晖完成签到,获得积分10
18秒前
Temperature完成签到,获得积分10
18秒前
cityhunter7777完成签到,获得积分10
18秒前
yzz完成签到,获得积分10
19秒前
BMG完成签到,获得积分10
19秒前
正直的如娆完成签到,获得积分10
20秒前
zwzw完成签到,获得积分10
20秒前
真的OK完成签到,获得积分10
20秒前
CGBIO完成签到,获得积分10
20秒前
zzhui完成签到,获得积分10
20秒前
文献蚂蚁完成签到,获得积分10
20秒前
qq完成签到,获得积分10
21秒前
喜喜完成签到,获得积分10
21秒前
洋芋饭饭完成签到,获得积分10
21秒前
啪嗒大白球完成签到,获得积分10
21秒前
美满惜寒完成签到,获得积分10
22秒前
runtang完成签到,获得积分10
22秒前
Syan完成签到,获得积分10
22秒前
清水完成签到,获得积分10
23秒前
30秒前
冷傲半邪发布了新的文献求助30
35秒前
量子星尘发布了新的文献求助10
37秒前
clock完成签到 ,获得积分10
48秒前
河豚不擦鞋完成签到 ,获得积分10
50秒前
wujiwuhui完成签到 ,获得积分10
50秒前
布干维尔岛耐摔王完成签到,获得积分10
52秒前
科研狗完成签到 ,获得积分0
59秒前
思源应助科研小木虫采纳,获得10
1分钟前
沧海一粟米完成签到 ,获得积分10
1分钟前
脑洞疼应助冷傲半邪采纳,获得30
1分钟前
雪宝宝完成签到 ,获得积分10
1分钟前
雪宝宝关注了科研通微信公众号
1分钟前
茶柠完成签到 ,获得积分10
1分钟前
bellapp完成签到 ,获得积分10
1分钟前
余呀余完成签到 ,获得积分10
1分钟前
minnie完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introductory Chemistry 400
Life: The Science of Biology Digital Update 400
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682948
求助须知:如何正确求助?哪些是违规求助? 4058215
关于积分的说明 12545974
捐赠科研通 3753863
什么是DOI,文献DOI怎么找? 2073322
邀请新用户注册赠送积分活动 1102323
科研通“疑难数据库(出版商)”最低求助积分说明 981614