Lattice Energy Calculation for Li Inserted Graphite at Relaxation Process

石墨烯 材料科学 石墨 阳极 堆栈(抽象数据类型) 放松(心理学) 锂(药物) 阴极 插层(化学) 纳米技术 电极 复合材料 无机化学 物理化学 化学 内分泌学 社会心理学 医学 程序设计语言 计算机科学 心理学
作者
Tomoki Endo,Hiroshi Okano,Takashi Kitamura,Shigeomi Takai,Takeshi Yabutsuka,Takeshi Yao
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (3): 438-438
标识
DOI:10.1149/ma2016-02/3/438
摘要

Introduction Relaxation analysis makes transition of electrode material from kinetic state to equilibrium state clear [1]. We have applied the Relaxation analysis to various kind of cathode and anode materials, such as γ-Fe 2 O 3 [2,3], LiMn 2 O 4 [4], LiFePO 4 [5], LiCoO 2 [6], LiMnPO 4 [7] and so on. In the previous work, we conducted relaxation analysis to graphite, the widespread anode material for lithium ion rechargeable batteries[8]. We analyzed the variation of stage structure of lithium-graphite intercalation compounds (Li-GICs) based on the one-dimensional Rietveld method[9]. It was indicated that defective stage 1 was formed at the lithium insertion process, and it separated into stage 1 without defect and stage 2 during the relaxation. Stage 2 had two kinds of interlayer distance. The wider interlayer distance increased, and narrower one decreased with the relaxation time. Generally, the structure of stage 2 is presented as the stack of Li-inserted graphene layer and Li-not-inserted graphene layer. However, from the point of symmetry, stack of graphene layers with two different Li concentration at the interlayer makes stage 2 structure. It was considered that, at Li insertion process, Li-rich interlayer and Li-lean interlayer stacked to construct stage 2, and that, at the relaxation time, structure of stage2 changed to stack of Li–fully-inserted graphene layer and Li-not-inserted graphene layer. This means that the stack of Li-fully-inserted graphene and Li-not-inserted graphene has the minimum lattice energy. In the present study, we compared the lattice energy of various stage 2 stacking graphene layers with different Li concentrations by the first principle calculations. Calculation We used Advance/PHASE software developed by Advancesoft corporation. The Advance/PHASE is based on first principle calculation with using the DFT (Density-Functional Theory) adopting the LDA (Local Density Approximation) and GGA (Generalized Gradient Approximation). Advance/PHASE solve the Kohn-Sham equation in SCF (self-consistent field). First, we constructed a stage 2 model having two graphene layer with 24 C atoms each. Second, we set 4 Li atoms in the model with 4 kinds of distribution as Fig.1. Number 1: 4 Li atoms are located in one interlayer with LiC6 type structure (ideal stage 2). Number 2,3,4 : Three kinds of Li configuration at the Li-lean layer. Results and Discussion The calculated lattice energies increased with the order as Number 1 < Number 2 < Number 3 < Number 4. This means that Number 1 configurations, the stack of Li-fully-inserted graphene and Li-not-inserted graphene (ideal stage 2), is the minimum, most stable. It is consistent the previous result that the wider interlayer distance increased, and narrower one decreased with the relaxation time for stage 2 at relaxation process. References [1] T. Yao, Energy Procedia 34, 9-12 (2013). [2] S. Park, M. Oda, and T. Yao, Solid State Ionics, 203, 29-32 (2011). [3] S. Park, S. Ito, K. Takasu and T. Yao, Electrochemistry, 80 (10) 804-807 (2012). [4] I. S. Seo, S. Park, and T. Yao, ECS Electrochem. Lett., 2 (1) A6-A9 (2013). [5] S. Park, K. Kameyama, and T. Yao, Electrochemical and Solid-State Letters, 15 (4) A49-A52 (2012). [6] I. Seo, S. Nagashima, S. Takai and T. Yao, ECS Electrochem. Lett., 2 (7) A72-A74 (2013). [7] Y. Satou, S. Komine, S. Park, T. Yao, Solid State Ionics, 262, 35-38, 2014. [8] T. Kitamura, S. Takai and T. Yao, 226 th ECS meeting abstract, 2236 (2014). [9] T.Yao, N.Ozawa, T.Aikawa, and S.Yoshinaga, Solid State Ionics, 175,199-202 (2004) Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助moon采纳,获得10
1秒前
2秒前
春夏爱科研完成签到,获得积分10
5秒前
k.o.完成签到,获得积分10
5秒前
夢loey发布了新的文献求助10
6秒前
深情安青应助缓慢珠采纳,获得10
7秒前
8秒前
8秒前
9秒前
10秒前
大模型应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
11秒前
11秒前
Ava应助科研通管家采纳,获得30
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得30
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
jason发布了新的文献求助10
12秒前
瓜瓜发布了新的文献求助10
12秒前
米兰达完成签到 ,获得积分0
14秒前
天宝发布了新的文献求助10
16秒前
17秒前
18秒前
zjw完成签到,获得积分10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777858
求助须知:如何正确求助?哪些是违规求助? 3323378
关于积分的说明 10214206
捐赠科研通 3038610
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798171
科研通“疑难数据库(出版商)”最低求助积分说明 758290