Functional Microgels and Microgel Systems

高分子 胶体 胶束 聚合物 纳米技术 化学工程 纳米颗粒 纳米凝胶 材料科学 单体 化学 化学物理 药物输送 有机化学 水溶液 工程类 生物化学
作者
Felix A. Plamper,Walter Richtering
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (2): 131-140 被引量:660
标识
DOI:10.1021/acs.accounts.6b00544
摘要

Microgels are macromolecular networks swollen by the solvent in which they are dissolved. They are unique systems that are distinctly different from common colloids, such as, e.g., rigid nanoparticles, flexible macromolecules, micelles, or vesicles. The size of the microgel networks is in the range of several micrometers down to nanometers (then sometimes called "nanogels"). In a collapsed state, they might resemble hard colloids but they can still contain significant amounts of solvent. When swollen, they are soft and have a fuzzy surface with dangling chains. The presence of cross-links provides structural integrity, in contrast to linear and (hyper)branched polymers. Obviously, the cross-linker content will allow control of whether microgels behave more "colloidal" or "macromolecular". The combination of being soft and porous while still having a stable structure through the cross-linked network allows for designing microgels that have the same total chemical composition, but different properties due to a different architecture. Microgels based, e.g., on two monomers but have either statistical spatial distribution, or a core-shell or hollow-two-shell morphology will display very different properties. Microgels provide the possibility to introduce chemical functionality at different positions. Combining architectural diversity and compartmentalization of reactive groups enables thus short-range coexistence of otherwise instable combinations of chemical reactivity. The open microgel structure is beneficial for uptake-release purposes of active substances. In addition, the openness allows site-selective integration of active functionalities like reactive groups, charges, or markers by postmodification processes. The unique ability of microgels to retain their colloidal stability and swelling degree both in water and in many organic solvents allows use of different chemistries for the modification of microgel structure. The capability of microgels to adjust both their shape and volume in response to external stimuli (e.g., temperature, ionic strength and composition, pH, electrochemical stimulus, pressure, light) provides the opportunity to reversibly tune their physicochemical properties. From a physics point of view, microgels are particularly intriguing and challenging, since their intraparticle properties are intimately linked to their interparticle behavior. Microgels, which reveal interface activity without necessarily being amphiphilic, develop even more complex behavior when located at fluid or solid interfaces: the sensitivity of microgels to various stimuli allows, e.g., the modulation of emulsion stability, adhesion, sensing, and filtration. Hence, we envision an ever-increasing relevance of microgels in these fields including biomedicine and process technology. In sum, microgels unite properties of very different classes of materials. Microgels can be based on very different (bio)macromolecules such as, e.g., polysaccharides, peptides, or DNA, as well as on synthetic polymers. This Account focuses on synthetic microgels (mainly based on acrylamides); however, the general, fundamental features of microgels are independent of the chemical nature of the building moieties. Microgels allow combining features of chemical functionality, structural integrity, macromolecular architecture, adaptivity, permeability, and deformability in a unique way to include the "best" of the colloidal, polymeric, and surfactant worlds. This will open the door for novel applications in very different fields such as, e.g., in sensors, catalysis, and separation technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助清爽的乐曲采纳,获得10
刚刚
嗯哼哈哈完成签到 ,获得积分10
1秒前
1秒前
wy.he应助zfcc采纳,获得10
1秒前
muadqwq完成签到,获得积分10
2秒前
Altria发布了新的文献求助10
2秒前
谢许杯商应助浪人情歌采纳,获得10
3秒前
May发布了新的文献求助10
3秒前
平淡玉米完成签到,获得积分10
3秒前
无极微光应助踏实小懒虫采纳,获得20
3秒前
kkkkllll发布了新的文献求助10
4秒前
田様应助Song采纳,获得10
4秒前
gakki完成签到,获得积分10
5秒前
AAAAa完成签到,获得积分10
6秒前
7秒前
May完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
脑洞疼应助一只百味鸡采纳,获得30
12秒前
sushx完成签到,获得积分10
12秒前
12秒前
livra1058发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
烧瓶杀手完成签到,获得积分10
13秒前
Camellia发布了新的文献求助10
13秒前
DamienC完成签到,获得积分10
15秒前
15秒前
15秒前
李呆发布了新的文献求助10
15秒前
研友_VZG7GZ应助123采纳,获得10
15秒前
善学以致用应助Altria采纳,获得10
16秒前
孙涛发布了新的文献求助10
16秒前
百注册发布了新的文献求助10
18秒前
21秒前
21秒前
Song发布了新的文献求助10
22秒前
ZunyeLiu发布了新的文献求助10
22秒前
研友_VZG7GZ应助gakki采纳,获得10
24秒前
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687