已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection of the gene mutation of epidermal growth factor receptor in lung adenocarcinoma by radiomic features from a small amount of PET data

腺癌 分类器(UML) 接收机工作特性 表皮生长因子受体 逻辑回归 小波 模式识别(心理学) 人工智能 计算机科学 核医学 医学 受体 癌症 内科学 机器学习
作者
Tianyou Zhang,Zefeng Liu,Li-Ying Lin,Tao Han,Fenghua Long,Hongyu Guo,Li Han
出处
期刊:Nuclear Medicine Communications [Lippincott Williams & Wilkins]
卷期号:44 (9): 795-802 被引量:2
标识
DOI:10.1097/mnm.0000000000001718
摘要

Objective The purpose of this work was to identify the potential mutation of epidermal growth factor receptor in nonsmall cell adenocarcinoma by noninvasive method, and to explore whether the same or better effect can be achieved using a small amount of single-mode PET image data. Method A total of 115 patients were recruited and the results of their 18F-FDG PET images and gene detection after resection were obtained; 117 original radiation features and 744 wavelet transform features were extracted from PET images. Several methods were used to reduce the dimension of the data, and four classifier models were established to classify it. The above process was repeated to reduce the total amount of data and the area under the receiver operating characteristic curve (AUC) value that changed with the reduction of the data and the stability of the results was recorded. Results The classifier with the best comprehensive performance under this dataset was logistic regression, whose AUC value is 0.843. And similar results can be obtained from only 30 cases of data. Conclusion A similar or better result could be achieved using a small number of single-mode PET images. In addition, significant results could be obtained using only the PET images of 30 patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助JULYMEI采纳,获得10
1秒前
剑指东方是为谁应助LIU采纳,获得10
2秒前
3秒前
kido完成签到,获得积分10
4秒前
4秒前
pipichang发布了新的文献求助10
4秒前
jie完成签到,获得积分10
5秒前
老杨完成签到,获得积分10
5秒前
幸福的乐蕊应助壮观以松采纳,获得10
6秒前
科目三应助twotonp采纳,获得10
7秒前
乐乐应助猴子大王666采纳,获得10
7秒前
7秒前
刘刘发布了新的文献求助10
7秒前
Yan发布了新的文献求助30
8秒前
11秒前
晴123发布了新的文献求助10
11秒前
12秒前
orixero应助Gaofangyu采纳,获得10
13秒前
13秒前
田様应助我是屈原在世采纳,获得30
13秒前
风趣幻枫发布了新的文献求助10
15秒前
15秒前
李健的小迷弟应助7811采纳,获得10
16秒前
Tcmlty发布了新的文献求助30
18秒前
ASH完成签到 ,获得积分10
19秒前
19秒前
20秒前
诺nuo发布了新的文献求助10
21秒前
积极的仙人柱完成签到,获得积分10
22秒前
思源应助ang采纳,获得10
26秒前
27秒前
森诺完成签到 ,获得积分10
27秒前
XXGG发布了新的文献求助10
27秒前
28秒前
宋Jade发布了新的文献求助10
30秒前
30秒前
星辰大海应助啊毛采纳,获得10
32秒前
天天快乐应助醉熏的幼珊采纳,获得10
33秒前
35秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906568
求助须知:如何正确求助?哪些是违规求助? 3452276
关于积分的说明 10869237
捐赠科研通 3177847
什么是DOI,文献DOI怎么找? 1755635
邀请新用户注册赠送积分活动 848934
科研通“疑难数据库(出版商)”最低求助积分说明 791330