A hybrid framework for delineating the migration route of soil heavy metal pollution by heavy metal similarity calculation and machine learning method

污染 污染物 重金属 环境科学 相似性(几何) 农业 土壤污染 自然(考古学) 污染 环境工程 土壤水分 环境化学 生态学 土壤科学 地理 计算机科学 化学 生物 考古 人工智能 图像(数学)
作者
Feng Wang,Lili Huo,Yue Li,Lina Wu,Yanqiu Zhang,Guoliang Shi,Yi An
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:858: 160065-160065 被引量:20
标识
DOI:10.1016/j.scitotenv.2022.160065
摘要

Soil heavy metal contamination was a global environmental issue that posed adverse impacts on ecological and human health risks. The controlling of soil heavy metal is mainly focused on the emission source and pipe-end treatment, less is known about the intermediate controlling process. The migration route of heavy metals exhibited the spatial evolution of pollutants from the sources to the pipe-end, which provided the more reasonable location for the target-oriented treatment of soil heavy metal. Here, we proposed a new view of heavy metal similarity, which quantitatively expressed how closely of the contaminations between the study area and the test areas. We found that the similarity of different heavy metals was unequally distributed across locations that were related with five main sources, namely agricultural activities, natural sources, traffic emissions, industrial activities, and other sources. Based on the similarity, a state-of-the-art machine learning method was applied to delineate the migration route of soil heavy metals. Thereinto, As was concentrated around livestock farms, and its migration route was close to the water system. Cd migration route was over-dispersed in the areas where located mine fields and chemical plants. Migration routes of Hg and Pb were along rivers, which were related to agricultural activities and natural sources. Overall, the perspective on similarity and migration routes provided theoretical basis and method to alleviate soil heavy metal pollution at regional scale and can be extended across largescale regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助聪慧的凝海采纳,获得10
1秒前
1秒前
2秒前
无辜的璎完成签到,获得积分10
2秒前
2秒前
寻光人发布了新的文献求助10
2秒前
waubycid完成签到,获得积分10
3秒前
zhouzhou完成签到 ,获得积分10
3秒前
慧灰huihui完成签到,获得积分10
4秒前
6秒前
小歘歘发布了新的文献求助10
6秒前
汤锐完成签到,获得积分10
6秒前
7秒前
7秒前
安年发布了新的文献求助10
7秒前
里里完成签到,获得积分10
7秒前
今后应助YXYWZMSZ采纳,获得10
8秒前
彬彬嘉完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
酷波er应助LCB采纳,获得10
11秒前
叶成会发布了新的文献求助10
11秒前
王芳关注了科研通微信公众号
11秒前
Owen应助深情的友易采纳,获得10
11秒前
ZJX发布了新的文献求助10
11秒前
11秒前
里里发布了新的文献求助10
12秒前
熊二发布了新的文献求助10
13秒前
SSmile完成签到,获得积分10
13秒前
豆豆发布了新的文献求助10
13秒前
刘婧完成签到 ,获得积分10
13秒前
情怀应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
Jasper应助科研通管家采纳,获得10
15秒前
15秒前
情怀应助科研通管家采纳,获得10
15秒前
CipherSage应助之南采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132106
求助须知:如何正确求助?哪些是违规求助? 4333612
关于积分的说明 13501430
捐赠科研通 4170651
什么是DOI,文献DOI怎么找? 2286519
邀请新用户注册赠送积分活动 1287364
关于科研通互助平台的介绍 1228373