Patient-Centered Research Through Artificial Intelligence to Identify Priorities in Cancer Care

医学 人工智能 新颖性 梅德林 医疗保健 自然语言处理 医学教育 计算机科学 心理学 政治学 经济增长 社会心理学 经济 法学
作者
Jiyeong Kim,Michael L. Chen,Shawheen J. Rezaei,Mariana Ramirez-Posada,Jennifer L. Caswell‐Jin,Allison W. Kurian,Fauzia Riaz,Kavita Y. Sarin,Jean Y. Tang,Steven M. Asch,Eleni Linos
出处
期刊:JAMA Oncology [American Medical Association]
标识
DOI:10.1001/jamaoncol.2025.0694
摘要

Importance Patient-centered research is essential for bridging the gap between research and patient care, yet patient perspectives are often inadequately represented in health research. Objective To leverage artificial intelligence (AI) and natural language processing (NLP) to analyze a large dataset of patient messages, defining patient concerns and generating relevant research topics, and to quantify the quality of these AI-generated topics. Design, Setting, and Participants This case series was conducted using an automated framework involving a 2-staged unsupervised NLP topic model and AI-generated research topic suggestions. The study was based on deidentified patient portal message data from individuals with breast or skin cancer at Stanford Health Care and 22 affiliated centers over July 2013 to April 2024. Exposures A widely used large language model (ChatGPT-4o [OpenAI]; April 2024) was used and guided through multiple prompt-engineering strategies to perform multilevel tasks, including knowledge interpretation and summarization (eg, interpreting and summarizing the NLP-defined topics), knowledge generation (eg, generating research ideas corresponding to patients’ issues), self-reflection and correction (eg, ensuring and revising the research ideas after searching for scientific articles), and self-reassurance (eg, confirming and finalizing the research ideas). Main Outcomes and Measures Three breast oncologists (J.L.C., A.W.K., F.R) and 3 dermatologists (K.Y.S, J.Y.T., E.L.) evaluated the meaningfulness and novelty of the AI-generated research topics using a 5-point Likert scale (1 representing exceptional to 5 representing poor). Mean (SD) scores for meaningfulness and novelty were computed for each topic. Results A total of 614 464 patient messages were analyzed from 25 549 individuals, 10 665 with breast cancer (98.6% female) and 14 884 had skin cancer (49.0% female). The overall mean (SD) scores for meaningfulness and novelty were 3.00 (0.50) and 3.29 (0.74), respectively, for breast cancer topics and 2.67 (0.45) and 3.09 (0.68), respectively, for skin cancer topics. One-third of the AI-suggested research topics were highly meaningful and novel when both scores were lower than the average (5 of 15 for breast cancer and 6 of 15 for skin cancer). Notably, two-thirds of the AI-suggested topics were novel (10 of 15 for breast cancer and 11 of 15 for skin cancer). Conclusions and Relevance This case series demonstrates that AI/NLP-driven analysis of large volumes of patient messages can generate quality research topics in cancer care that reflect patient perspectives, providing valuable guidance for future patient-centered health research endeavors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张益龙完成签到,获得积分20
1秒前
Tom47发布了新的文献求助10
1秒前
小小虾发布了新的文献求助10
2秒前
橙橙吖完成签到,获得积分10
3秒前
大模型应助oyl采纳,获得10
3秒前
粥粥完成签到,获得积分10
4秒前
许个愿吧发布了新的文献求助10
5秒前
cc完成签到,获得积分10
6秒前
6秒前
甜甜玫瑰应助科研Queen采纳,获得10
6秒前
tsuki完成签到 ,获得积分10
7秒前
9秒前
852应助笑笑采纳,获得10
9秒前
平常瑛发布了新的文献求助10
11秒前
大模型应助清风采纳,获得10
11秒前
斯文念云发布了新的文献求助10
11秒前
英姑应助Xy采纳,获得10
13秒前
14秒前
阿桥完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
英姑应助谨慎乞采纳,获得10
17秒前
lifeng发布了新的文献求助20
17秒前
秘书处堂发布了新的文献求助10
18秒前
18秒前
11发布了新的文献求助10
18秒前
18秒前
19秒前
1123发布了新的文献求助20
19秒前
20秒前
20秒前
易槐发布了新的文献求助10
21秒前
哭泣半双发布了新的文献求助30
22秒前
阿钰发布了新的文献求助10
22秒前
22秒前
无花果应助ZhangY采纳,获得10
22秒前
Hello应助ZhangY采纳,获得10
22秒前
研友_VZG7GZ应助ZhangY采纳,获得10
23秒前
隐形曼青应助ZhangY采纳,获得10
23秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097715
求助须知:如何正确求助?哪些是违规求助? 3635489
关于积分的说明 11523460
捐赠科研通 3345666
什么是DOI,文献DOI怎么找? 1838879
邀请新用户注册赠送积分活动 906323
科研通“疑难数据库(出版商)”最低求助积分说明 823616