亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-Strategy Artificial Electric Field Algorithm for Numerical Optimization

计算机科学 领域(数学) 数学优化 优化算法 算法 人工智能 数学 纯数学
作者
Zhichao Feng,Jiatang Cheng
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
标识
DOI:10.1142/s1469026825500026
摘要

Artificial electric field algorithm (AEFA) is a metaheuristic optimization algorithm proposed in recent years, which has been successfully applied to address various optimization problems. However, it is likely to converge prematurely or fall into local optima when solving complex problems. To overcome these disadvantages, a multi-strategy artificial electric field algorithm (MAEFA) is proposed in this paper. For the MAEFA algorithm, the global optimal solution information is utilized to improve the diversity of population and global search ability. Then, the adaptive Coulomb’s constant is configured to balance the global exploration and local search. Also, a restart strategy is designed to further alleviate the premature convergence. To validate the effectiveness of MAEFA, it is compared with three AEFA algorithms and several other evolutionary algorithms on 14 test problems presented in CEC 2005 and 13 basic benchmark functions. Furthermore, a wind power prediction model based on MAEFA algorithm and back-propagation (BP) neural network is established to investigate its application ability. Experiments show that MAEFA is significantly superior to other algorithms in tackling these benchmark functions with different dimensions. Furthermore, in terms of wind power prediction, the BP neural network model optimized by MAEFA algorithm also provides higher prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
迅速冰岚发布了新的文献求助10
9秒前
满意的晓啸完成签到,获得积分10
10秒前
dd完成签到,获得积分10
15秒前
17秒前
迅速冰岚完成签到,获得积分10
21秒前
汉堡包应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得30
22秒前
22秒前
28秒前
Jemma完成签到 ,获得积分10
31秒前
jyy完成签到,获得积分10
32秒前
41秒前
文艺映阳完成签到,获得积分10
46秒前
54秒前
Lucas应助隐形的雁采纳,获得10
54秒前
56秒前
1hhr发布了新的文献求助10
58秒前
leyellows完成签到 ,获得积分10
58秒前
vv完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
在水一方应助1hhr采纳,获得10
1分钟前
1分钟前
Bingtao_Lian完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
起风了完成签到 ,获得积分10
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
yydragen应助lyz采纳,获得50
2分钟前
盛事不朽完成签到 ,获得积分10
2分钟前
在水一方应助研友_Zlx3aZ采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Pericardium发布了新的文献求助10
2分钟前
Bond完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助150
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4255464
求助须知:如何正确求助?哪些是违规求助? 3788254
关于积分的说明 11888478
捐赠科研通 3438177
什么是DOI,文献DOI怎么找? 1886801
邀请新用户注册赠送积分活动 937933
科研通“疑难数据库(出版商)”最低求助积分说明 843645