Forest site classification and grading using mixed-variables clustering and nonlinear mixed-effects modeling based on forest inventory data

聚类分析 分级(工程) 林业 混合模型 随机森林 森林资源清查 统计 地理 计算机科学 数学 人工智能 工程类 森林经营 土木工程
作者
Biyun Wu,Xiangdong Lei,Qigang Xu,Yangping Qin,Guangshuang Duan,Xiao He,Christian Ammer,Kerstin Pierick,Ram P. Sharma,Yuancai Lei,Hong Guo,Wenqiang Gao,Yutang Li
出处
期刊:Forestry [Oxford University Press]
卷期号:98 (5): 812-826
标识
DOI:10.1093/forestry/cpaf017
摘要

Abstract Site classification is the basis for evaluating forest productivity and is essential for tree species selection, soil fertility maintenance, forest management, and securing forest carbon sinks. Despite extensive research on site classification and evaluation, it remains unclear how to incorporate mixed variables (discrete and continuous) from climate, soil, geographical, and topographic factors into site classification and how to rank the classification effectively. Based on a large dataset from 16 162 sample plots throughout Jilin Province in Northeast China, we identified environmental variables (geography, topography, climate, and soil factors) that affect site form, which is an indicator of site quality, and classified plots as 10 site types using mixed-variables clustering via the expectation–maximization algorithm. Subsequently, these site types were ranked as site classes based on growth performance. A mixed-effects site form model was developed with dummy variables accounting for differences among six forest types (coniferous forest, hardwood broadleaved forest, softwood broadleaved forest, coniferous mixed forest, broadleaved mixed forest, and coniferous broadleaved mixed forest) and random components describing site classes. The model was utilized to evaluate the reasonability of site classification. The final site classes were determined by combining the nonlinear mixed-effects model with hierarchical agglomeration. We conclude that multifactorial mixed-variables clustering had a good performance, and the mixed-effects site form model effectively describes the differences among site classes and forest types. The results demonstrate that site classification, which integrates both environmental factors and growth data, achieves good performance. This study presents a novel and practical framework for site classification and site quality assessment, with a focus on mixed forests, providing valuable tools for forest management and planning to support tree species (mixture) selection, site management, and silviculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
NexusExplorer应助枯荣采纳,获得10
1秒前
xuexia发布了新的文献求助30
1秒前
1秒前
1秒前
Ava应助xtlx采纳,获得10
1秒前
声声完成签到,获得积分10
1秒前
1秒前
科研通AI6应助幽默尔蓝采纳,获得10
1秒前
2秒前
2秒前
银月完成签到,获得积分10
2秒前
moumou完成签到 ,获得积分10
2秒前
科研通AI6应助平淡白梦采纳,获得10
2秒前
2秒前
尕翠完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
大个应助micaixing2006采纳,获得10
4秒前
李爱国应助Quhang采纳,获得10
4秒前
Kay76发布了新的文献求助10
4秒前
5秒前
Cyber_relic发布了新的文献求助10
5秒前
5秒前
PDL1完成签到,获得积分10
5秒前
fanature发布了新的文献求助30
6秒前
桐桐应助雪白小丸子采纳,获得30
6秒前
淑儿哥哥发布了新的文献求助10
6秒前
求助人员发布了新的文献求助10
6秒前
6秒前
chigga完成签到,获得积分10
7秒前
7秒前
grmqgq完成签到,获得积分10
7秒前
yu完成签到,获得积分10
7秒前
jackycas发布了新的文献求助10
8秒前
火星上的小笼包完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647599
求助须知:如何正确求助?哪些是违规求助? 4773824
关于积分的说明 15040250
捐赠科研通 4806401
什么是DOI,文献DOI怎么找? 2570250
邀请新用户注册赠送积分活动 1527084
关于科研通互助平台的介绍 1486162