Molecular targets and mechanisms of traditional Chinese medicine combined with chemotherapy for gastric cancer: a meta-analysis and multi-omics approach

癌症 组学 医学 化疗 精密医学 荟萃分析 中医药 生物信息学 计算生物学 肿瘤科 内科学 传统医学 生物 病理 替代医学
作者
Jie Lin,Jincheng Wang,Kai Zhao,Yongzhi Li,Xuewen Zhang,Jiyao Sheng
出处
期刊:Annals of Medicine [Informa]
卷期号:57 (1) 被引量:2
标识
DOI:10.1080/07853890.2025.2494671
摘要

The combination of traditional Chinese medicine (TCM) with chemotherapy has been widely applied in the treatment of gastric cancer (GC). However, previous clinical studies have been constrained by small sample sizes and a lack of investigation into the molecular mechanisms of TCM. This study aims to assess the efficacy of TCM in treating GC by leveraging the strengths of meta-analysis and multi-omics approaches while also summarizing the underlying pharmacological mechanisms. A systematic literature review and meta-analysis were conducted using online databases to collect data before May 2024. This was to investigate the association between TCM combined with chemotherapy and the prognosis in GC. The molecular targets between the high-frequency TCMs and GC were identified through network pharmacology. The underlying mechanisms were investigated using multi-omics. 9 studies with 2,158 patients were included. The meta-analysis results demonstrated that the combination of TCM and chemotherapy significantly improved the overall survival (OS) of GC patients (OR = 2.91; 95% CI: 2.70-3.12, p < 0.00001) and enhanced their quality of life (OR = 4.00; 95% CI: 1.99-8.03, p < 0.0001). Network pharmacology analysis identified 13 potential molecular targets of TCM in GC; additionally, multi-omics analysis highlighted the significant roles of MK, MIF, GALECTIN, and CypA signaling pathways in GC. The combination of TCM with chemotherapy significantly improves the prognosis of GC; future research can focus on these key molecular targets and signaling pathways. This supports the application of precision medicine in cancer treatment and suggests the rational use of TCM in managing GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
刚刚
刚刚
刚刚
我是老大应助丝色云月采纳,获得10
1秒前
1秒前
1秒前
咕咕咕咕咕完成签到 ,获得积分10
1秒前
科研通AI5应助柳如花采纳,获得10
2秒前
木棉完成签到,获得积分10
2秒前
2秒前
zhenglei9058发布了新的文献求助10
2秒前
lq发布了新的文献求助10
2秒前
3秒前
fian发布了新的文献求助30
3秒前
完美世界应助ava采纳,获得10
4秒前
4秒前
Northharbor发布了新的文献求助10
4秒前
4秒前
kunkun发布了新的文献求助10
5秒前
麞欎发布了新的文献求助10
6秒前
小情绪应助水电站采纳,获得30
6秒前
7秒前
Yulin Yu发布了新的文献求助10
7秒前
李伟完成签到,获得积分20
8秒前
阿冲发布了新的文献求助10
9秒前
何同宇发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
冰汤圆完成签到,获得积分10
9秒前
9秒前
雪白鸿涛完成签到,获得积分10
9秒前
10秒前
是永是之发布了新的文献求助10
10秒前
成就山菡完成签到,获得积分10
10秒前
11秒前
快点毕业发布了新的文献求助10
11秒前
充电宝应助方姿采纳,获得10
11秒前
11秒前
骆驼牛子完成签到,获得积分10
12秒前
优秀小霜发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072617
求助须知:如何正确求助?哪些是违规求助? 4292947
关于积分的说明 13376665
捐赠科研通 4114155
什么是DOI,文献DOI怎么找? 2252906
邀请新用户注册赠送积分活动 1257594
关于科研通互助平台的介绍 1190476