Molecular targets and mechanisms of traditional Chinese medicine combined with chemotherapy for gastric cancer: a meta-analysis and multi-omics approach

癌症 组学 医学 化疗 精密医学 荟萃分析 中医药 生物信息学 计算生物学 肿瘤科 内科学 传统医学 生物 病理 替代医学
作者
Jie Lin,Jincheng Wang,Kai Zhao,Yongzhi Li,Xuewen Zhang,Jiyao Sheng
出处
期刊:Annals of Medicine [Informa]
卷期号:57 (1)
标识
DOI:10.1080/07853890.2025.2494671
摘要

The combination of traditional Chinese medicine (TCM) with chemotherapy has been widely applied in the treatment of gastric cancer (GC). However, previous clinical studies have been constrained by small sample sizes and a lack of investigation into the molecular mechanisms of TCM. This study aims to assess the efficacy of TCM in treating GC by leveraging the strengths of meta-analysis and multi-omics approaches while also summarizing the underlying pharmacological mechanisms. A systematic literature review and meta-analysis were conducted using online databases to collect data before May 2024. This was to investigate the association between TCM combined with chemotherapy and the prognosis in GC. The molecular targets between the high-frequency TCMs and GC were identified through network pharmacology. The underlying mechanisms were investigated using multi-omics. 9 studies with 2,158 patients were included. The meta-analysis results demonstrated that the combination of TCM and chemotherapy significantly improved the overall survival (OS) of GC patients (OR = 2.91; 95% CI: 2.70-3.12, p < 0.00001) and enhanced their quality of life (OR = 4.00; 95% CI: 1.99-8.03, p < 0.0001). Network pharmacology analysis identified 13 potential molecular targets of TCM in GC; additionally, multi-omics analysis highlighted the significant roles of MK, MIF, GALECTIN, and CypA signaling pathways in GC. The combination of TCM with chemotherapy significantly improves the prognosis of GC; future research can focus on these key molecular targets and signaling pathways. This supports the application of precision medicine in cancer treatment and suggests the rational use of TCM in managing GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GY发布了新的文献求助10
刚刚
高不二完成签到,获得积分10
刚刚
1秒前
阿枫完成签到,获得积分10
1秒前
1秒前
迈克老狼发布了新的文献求助10
1秒前
1秒前
LeafJin完成签到 ,获得积分10
1秒前
丁一发布了新的文献求助20
2秒前
JZX发布了新的文献求助10
2秒前
饱满的储完成签到,获得积分20
2秒前
2秒前
追寻羿完成签到 ,获得积分10
3秒前
584178682完成签到,获得积分10
3秒前
菜鸟队长完成签到 ,获得积分10
3秒前
蔡从安发布了新的文献求助10
3秒前
yuan完成签到,获得积分10
3秒前
3秒前
4秒前
完美世界应助afterly采纳,获得10
5秒前
6秒前
6秒前
我爱学习发布了新的文献求助10
7秒前
7秒前
7秒前
zhugepengju发布了新的文献求助10
7秒前
Kiosta发布了新的文献求助10
8秒前
chloe完成签到,获得积分10
8秒前
YM发布了新的文献求助10
8秒前
8秒前
biubiuu完成签到,获得积分10
9秒前
无限毛豆完成签到 ,获得积分10
9秒前
10秒前
李lj发布了新的文献求助10
10秒前
听安发布了新的文献求助10
11秒前
忙里偷闲发布了新的文献求助10
12秒前
脑洞疼应助我爱学习采纳,获得10
13秒前
13秒前
呜啦啦发布了新的文献求助10
13秒前
moonlin发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3869052
求助须知:如何正确求助?哪些是违规求助? 3411333
关于积分的说明 10673182
捐赠科研通 3135583
什么是DOI,文献DOI怎么找? 1729789
邀请新用户注册赠送积分活动 833475
科研通“疑难数据库(出版商)”最低求助积分说明 780798