Molecular targets and mechanisms of traditional Chinese medicine combined with chemotherapy for gastric cancer: a meta-analysis and multi-omics approach

癌症 组学 医学 化疗 精密医学 荟萃分析 中医药 生物信息学 计算生物学 肿瘤科 内科学 传统医学 生物 病理 替代医学
作者
Jie Lin,Jincheng Wang,Kai Zhao,Yongzhi Li,Xuewen Zhang,Jiyao Sheng
出处
期刊:Annals of Medicine [Informa]
卷期号:57 (1) 被引量:2
标识
DOI:10.1080/07853890.2025.2494671
摘要

The combination of traditional Chinese medicine (TCM) with chemotherapy has been widely applied in the treatment of gastric cancer (GC). However, previous clinical studies have been constrained by small sample sizes and a lack of investigation into the molecular mechanisms of TCM. This study aims to assess the efficacy of TCM in treating GC by leveraging the strengths of meta-analysis and multi-omics approaches while also summarizing the underlying pharmacological mechanisms. A systematic literature review and meta-analysis were conducted using online databases to collect data before May 2024. This was to investigate the association between TCM combined with chemotherapy and the prognosis in GC. The molecular targets between the high-frequency TCMs and GC were identified through network pharmacology. The underlying mechanisms were investigated using multi-omics. 9 studies with 2,158 patients were included. The meta-analysis results demonstrated that the combination of TCM and chemotherapy significantly improved the overall survival (OS) of GC patients (OR = 2.91; 95% CI: 2.70-3.12, p < 0.00001) and enhanced their quality of life (OR = 4.00; 95% CI: 1.99-8.03, p < 0.0001). Network pharmacology analysis identified 13 potential molecular targets of TCM in GC; additionally, multi-omics analysis highlighted the significant roles of MK, MIF, GALECTIN, and CypA signaling pathways in GC. The combination of TCM with chemotherapy significantly improves the prognosis of GC; future research can focus on these key molecular targets and signaling pathways. This supports the application of precision medicine in cancer treatment and suggests the rational use of TCM in managing GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
与离完成签到 ,获得积分10
3秒前
冷傲千秋完成签到 ,获得积分10
6秒前
starwan完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
祁乐天完成签到 ,获得积分10
8秒前
用行舍藏完成签到,获得积分10
9秒前
Keyuuu30完成签到,获得积分0
10秒前
红糖小馒头关注了科研通微信公众号
11秒前
ldy完成签到,获得积分10
16秒前
铜豌豆完成签到 ,获得积分10
17秒前
bubuyier完成签到 ,获得积分10
17秒前
科研老兵完成签到,获得积分10
19秒前
贪玩的万仇完成签到 ,获得积分10
19秒前
widesky777完成签到 ,获得积分0
21秒前
轻松元绿完成签到 ,获得积分10
22秒前
22秒前
mss12138完成签到 ,获得积分10
24秒前
文心同学完成签到,获得积分0
26秒前
呆呆的猕猴桃完成签到 ,获得积分10
28秒前
开放素完成签到 ,获得积分10
33秒前
const完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
36秒前
36秒前
honting完成签到,获得积分10
36秒前
蓝桉完成签到 ,获得积分10
36秒前
张俊琪完成签到,获得积分10
45秒前
阿达完成签到 ,获得积分10
45秒前
Bismarck完成签到,获得积分20
49秒前
义气天空完成签到,获得积分10
51秒前
xiaowanzi完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助30
52秒前
TianFuAI完成签到,获得积分10
52秒前
蛋花肉圆汤完成签到,获得积分10
52秒前
阳光的幻雪完成签到 ,获得积分10
53秒前
干净的雪枫完成签到,获得积分10
56秒前
56秒前
59秒前
张俊琪发布了新的文献求助10
1分钟前
研友_ZA2B68完成签到,获得积分0
1分钟前
chenkj完成签到,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4256831
求助须知:如何正确求助?哪些是违规求助? 3789322
关于积分的说明 11889009
捐赠科研通 3438662
什么是DOI,文献DOI怎么找? 1886968
邀请新用户注册赠送积分活动 938149
科研通“疑难数据库(出版商)”最低求助积分说明 843758