全息术
反向
手性(物理)
圆二色性
光学
反问题
深度学习
领域(数学)
计算机科学
物理
人工智能
数学
几何学
化学
数学分析
纯数学
手征对称破缺
量子力学
Nambu–Jona Lasinio模型
结晶学
夸克
作者
Yihang Qiu,Sixue Chen,Zheyu Hou,Jingjing Wang,Jian Shen,Chaoyang Li
出处
期刊:Micromachines
[MDPI AG]
日期:2023-03-31
卷期号:14 (4): 789-789
被引量:10
摘要
Chiral metasurfaces have great influence on the development of holography. Nonetheless, it is still challenging to design chiral metasurface structures on demand. As a machine learning method, deep learning has been applied to design metasurface in recent years. This work uses a deep neural network with a mean absolute error (MAE) of 0.03 to inverse design chiral metasurface. With the help of this approach, a chiral metasurface with circular dichroism (CD) values higher than 0.4 is designed. The static chirality of the metasurface and the hologram with an image distance of 3000 μm are characterized. The imaging results are clearly visible and demonstrate the feasibility of our inverse design approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI