稀释剂
离子
水溶液
锌
电解质
基质(化学分析)
材料科学
无机化学
化学
核化学
冶金
电极
物理化学
复合材料
有机化学
作者
Chenyue Huang,Ming Zhao,Chong Xu,Yanqun Lv,Ming Fang,Qianwen Dong,Yunkai Xu,Zheng Bo,Jun Lü
标识
DOI:10.1002/anie.202511410
摘要
Abstract Aqueous zinc‐ion batteries suffer from electrolyte‐induced degradation despite their inherent safety advantages. While localized high‐concentration electrolytes (LHCEs) mitigate interfacial instability, the excessive cation–anion association elevate ionic transport barriers, resulting in sluggish migration kinetics. Herein, ion‐decoupled LHCE (ID‐LHCE) are proposed using amphiphilic 2,2,3,3‐tetrafluoro‐1‐propanol (TFP) as anion‐affinity diluent. The TFP‐mediated anion‐diluent matrix (ADM) liberates anion OTF − from Zn 2+ solvation sheaths, which maintains Zn 2+ ‐enriched nanodomains while significantly reducing ionic transport barriers with an elevated Zn 2+ transference number of 0.72. ADM decouples aqueous networks into biphasic H 2 O‐rich/poor nanodomains, establishing a localized environment with attenuated water activity that suppresses hydrogen evolution reaction. Concurrently generated water‐deficient interfaces and dehydrated OTF − coordination environment synergistically facilitate the construction of dense gradient heterogeneous SEI: an inner ZnF 2 ‐ZnS inorganic layer and an outer oligomer layer, enabling dendrite‐free zinc deposition with ultralong cyclability (3,000 h at 1 mA cm −2 ) and 99.88% coulombic efficiency. Full cells paired with NaV 3 O 8 ·1.5H 2 O cathodes retain 72.5% capacity retention after 2,000 cycles at 0.5 A g −1 . Practical viability is demonstrated by the stable operation of high mass loading ampere‐hour‐level pouch cells (1.04 Ah). By correlating molecular interactions, nanoscale phase separation, and macroscopic ion migration, this work establishes a multiscale design paradigm for electrolyte nanostructure.
科研通智能强力驱动
Strongly Powered by AbleSci AI