Histidine‐Induced Cu(II) Coordination Distortion in Cu‐MOF: A Groundbreaking Strategy to Revolutionize Nanozyme Catalytic Mechanisms and Break pH Limitations

材料科学 组氨酸 纳米技术 催化作用 失真(音乐) 光电子学 有机化学 化学 CMOS芯片 放大器
作者
Zenan Hu,Xiaorong Sun,Yuanyuan Sun,Yuming Dong,Guangli Wang
出处
期刊:Advanced Functional Materials [Wiley]
被引量:1
标识
DOI:10.1002/adfm.202510837
摘要

Abstract Peroxidase‐like (POD‐like) nanozymes have attracted widespread interest for their compelling catalytic capabilities, nevertheless, conventional POD‐like nanozymes typically exhibit infinitesimal activity under neutral and alkaline conditions, severely restricting their applications. Developing nanozymes with high catalytic performance under neutral and alkaline conditions remains formidable yet highly sought‐after challenges. Herein, a dual‐ligand Cu‐MOF nanozyme is introduced with histidine (His)‐induced Cu(II) coordination distortion to innovate the H 2 O 2 ‐decomposition pathway for breaking pH limitations. This nanozyme displays activity across pH ranges of 2.0‐12.0 (with optimal at pH 9.0) and achieves superior catalytic efficiency of 2–3 orders of magnitude higher than the reported nanozymes under alkaline conditions. His coordination promotes the generation of singlet oxygen ( 1 O 2 ) instead of hydroxyl radicals (•OH) typically produced by traditional nanozymes, thereby overcoming the self‐decomposition and low oxidizing activity of H 2 O 2 under alkaline conditions. Theoretical calculations reveal that His‐induced coordination distortion modulates the electron distribution and alters H 2 O 2 binding sites, fundamentally reshaping the reaction mechanism. Leveraging on its exceptional catalytic properties, multifunctional colorimetric sensing platforms are constructed for diverse biomarkers. This study pioneers a transformative strategy based on ligand‐induced metal‐center coordination distortion, offering insight into optimize H 2 O 2 catalytic pathways, surmounting pH limitations, and broadening the functional application of nanozymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rjhgh完成签到,获得积分10
刚刚
打打应助大气的雁桃采纳,获得10
刚刚
刚刚
1秒前
ding应助姜酱江酱采纳,获得10
1秒前
1秒前
小王发布了新的文献求助10
1秒前
supermario完成签到,获得积分10
1秒前
慕青应助ddj采纳,获得30
2秒前
兔兔要睡觉完成签到,获得积分10
3秒前
3秒前
3秒前
苗芸发布了新的文献求助10
4秒前
杨超完成签到,获得积分10
4秒前
lyz完成签到,获得积分10
4秒前
5秒前
xgx984发布了新的文献求助10
5秒前
5秒前
5秒前
妮妮发布了新的文献求助150
6秒前
踏实大侠完成签到,获得积分10
6秒前
6秒前
7秒前
孤独灰狼完成签到,获得积分10
7秒前
7秒前
jiao完成签到,获得积分10
8秒前
8秒前
illusion完成签到,获得积分10
8秒前
8秒前
kaiki完成签到,获得积分10
9秒前
jyszh1001发布了新的文献求助10
9秒前
jiaminghao完成签到,获得积分10
9秒前
落后的纸鹤完成签到,获得积分10
9秒前
兔兔不睡觉完成签到 ,获得积分10
10秒前
浮游应助明理的雨南采纳,获得10
10秒前
Hello应助大气的雁桃采纳,获得10
10秒前
10秒前
10秒前
1x3完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5440871
求助须知:如何正确求助?哪些是违规求助? 4551693
关于积分的说明 14231467
捐赠科研通 4472737
什么是DOI,文献DOI怎么找? 2450980
邀请新用户注册赠送积分活动 1441998
关于科研通互助平台的介绍 1418184