亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Magnetic resonance imaging assessments for knee segmentation and their use in combination with machine/deep learning as predictors of early osteoarthritis diagnosis and prognosis

磁共振成像 医学 骨关节炎 深度学习 机器学习 人工智能 叙述性评论 膝关节 痹症科 模式 放射科 计算机科学 病理 外科 重症监护医学 替代医学 社会科学 社会学
作者
Johanne Martel‐Pelletier,Patrice Paiement,Jean‐Pierre Pelletier
出处
期刊:Therapeutic Advances in Musculoskeletal Disease [SAGE Publishing]
卷期号:15 被引量:10
标识
DOI:10.1177/1759720x231165560
摘要

Knee osteoarthritis (OA) is a prevalent and disabling disease that can develop over decades. This disease is heterogeneous and involves structural changes in the whole joint, encompassing multiple tissue types. Detecting OA before the onset of irreversible changes is crucial for early management, and this could be achieved by allowing knee tissue visualization and quantifying their changes over time. Although some imaging modalities are available for knee structure assessment, magnetic resonance imaging (MRI) is preferred. This narrative review looks at existing literature, first on MRI-developed approaches for evaluating knee articular tissues, and second on prediction using machine/deep-learning-based methodologies and MRI as input or outcome for early OA diagnosis and prognosis. A substantial number of MRI methodologies have been developed to assess several knee tissues in a semi-quantitative and quantitative fashion using manual, semi-automated and fully automated systems. This dynamic field has grown substantially since the advent of machine/deep learning. Another active area is predictive modelling using machine/deep-learning methodologies enabling robust early OA diagnosis/prognosis. Moreover, incorporating MRI markers as input/outcome in such predictive models is important for a more accurate OA structural diagnosis/prognosis. The main limitation of their usage is the ability to move them in rheumatology practice. In conclusion, MRI knee tissue determination and quantification provide early indicators for individuals at high risk of developing this disease or for patient prognosis. Such assessment of knee tissues, combined with the development of models/tools from machine/deep learning using, in addition to other parameters, MRI markers for early diagnosis/prognosis, will maximize opportunities for individualized risk assessment for use in clinical practice permitting precision medicine. Future efforts should be made to integrate such prediction models into open access, allowing early disease management to prevent or delay the OA outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
XCHI完成签到 ,获得积分10
43秒前
科研通AI2S应助tuanheqi采纳,获得20
59秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
tutu完成签到,获得积分10
1分钟前
无情的琳完成签到,获得积分10
1分钟前
1分钟前
豌豆发布了新的文献求助10
1分钟前
无情的琳发布了新的文献求助10
1分钟前
QQ完成签到 ,获得积分10
1分钟前
Nefelibata完成签到,获得积分10
2分钟前
辛勤奇迹完成签到,获得积分10
2分钟前
Limerencia完成签到,获得积分10
2分钟前
3分钟前
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
科研通AI5应助冬天该很好采纳,获得10
3分钟前
吃惊橘子完成签到,获得积分10
3分钟前
余念安完成签到 ,获得积分10
3分钟前
3分钟前
斯文败类应助有魅力碧蓉采纳,获得10
3分钟前
timemaster666发布了新的文献求助10
3分钟前
善学以致用应助独特天问采纳,获得10
4分钟前
腿腿完成签到,获得积分10
4分钟前
所所应助卓头OvQ采纳,获得10
4分钟前
4分钟前
4分钟前
伊可创完成签到,获得积分20
4分钟前
共享精神应助故意的乐菱采纳,获得10
4分钟前
CMJ完成签到 ,获得积分10
4分钟前
4分钟前
伊可创发布了新的文献求助30
4分钟前
4分钟前
4分钟前
陶醉的烤鸡完成签到 ,获得积分10
4分钟前
4分钟前
Rr发布了新的文献求助10
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244081
捐赠科研通 3045388
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800562
科研通“疑难数据库(出版商)”最低求助积分说明 759483