Automated Diagnosis of Pulmonary Diseases Using Lung Sound Signals

峰度 计算机科学 人工智能 信号处理 冗余(工程) 支持向量机 模式识别(心理学) 电信 统计 数学 雷达 操作系统
作者
Umair ul Hassan,Amit Singhal
出处
期刊:Iete Journal of Research [Taylor & Francis]
卷期号:70 (5): 4792-4800 被引量:2
标识
DOI:10.1080/03772063.2023.2258495
摘要

AbstractPulmonary diseases are the third biggest cause of deaths worldwide. A prominent method to detect these diseases is the observation of lung sound signals. There is an increasing need for an efficient technique that can automatically diagnose such diseases with high accuracy. In this paper, two popular public datasets are considered, and every lung sound signal is decomposed into 8 frequency bands using rectangular zero-phase filters. Features are extracted from every band, including energy, kurtosis, mean absolute deviation and Lp norm. The extracted features are utilized for classification using machine learning schemes. The proposed method achieves 99.9% accuracy for multi-class classification on the combined dataset, and for binary classification, we have evaluated normal signal versus pathogenic signal, which is found to be 100% accurate for most of the diseases. High accuracy is obtained for the individual datasets as well. Top 20 features selected using minimum redundancy maximum relevance algorithm also yield 98.6% accuracy. Therefore, the proposed method can be easily deployed in real-time systems.KEYWORDS: Feature rankingfrequency bandsminimum redundancy maximum relevancepulmonary diseasessignal decompositionzero-phase filters Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsU. HassanU Hassan received her BTech degree in electronics and communication engineering from Kurukshetra university, Haryana, India in 2016 and MTech degree in electronics and communication engineering from Kurukshetra university, Haryana, India. She is currently pursuing PhD at the department of electronics and communication engineering, NSUT, Delhi, India. Her areas of interest include medical signal processing, speech signal processing, artificial intelligence, and machine learning. Email: umaisathakur@gmail.comA. SinghalA Singhal completed his dual degree with BTech in electrical engineering and MTech in information and communication technology from IIT Delhi in 2009. He completed his PhD in molecular communication from IIT Delhi in 2016. He has a total teaching experience of more than 13 years. He is currently working as assistant professor in the department of electronics and communication engineering in NSUT, Delhi, India. His areas of interest are Image Processing, Molecular Communications, Next generating communication technologies, Image retrieval, Theory and Applications of Fourier methods. Corresponding author. Email: amit@nsut.ac.in
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张磊完成签到,获得积分20
刚刚
LYM完成签到,获得积分10
1秒前
2秒前
阿托品完成签到 ,获得积分10
2秒前
阿七完成签到,获得积分10
3秒前
4秒前
Hum0ro98完成签到,获得积分10
4秒前
cccw完成签到,获得积分10
4秒前
6秒前
龙眼肉完成签到,获得积分20
6秒前
脑洞疼应助___采纳,获得10
6秒前
7秒前
7秒前
fighting发布了新的文献求助10
9秒前
10秒前
10秒前
栓牛哥完成签到,获得积分10
11秒前
正义必胜发布了新的文献求助10
13秒前
欢呼的莆发布了新的文献求助10
13秒前
长情箴完成签到 ,获得积分10
13秒前
zmq应助www123qe采纳,获得10
14秒前
张磊发布了新的文献求助30
16秒前
VPN不好用完成签到,获得积分10
16秒前
fighting完成签到,获得积分20
16秒前
852应助一一采纳,获得10
19秒前
Fan完成签到,获得积分10
20秒前
21秒前
21秒前
wowo关注了科研通微信公众号
23秒前
苏卿发布了新的文献求助30
23秒前
科研通AI5应助Mrmiss666采纳,获得10
24秒前
明亮的冷雪完成签到,获得积分10
26秒前
Rain发布了新的文献求助10
26秒前
铮铮铁骨发布了新的文献求助10
26秒前
酷波er应助友好的黑猫采纳,获得10
29秒前
火火完成签到 ,获得积分10
30秒前
科研通AI5应助炙热灵采纳,获得10
30秒前
32秒前
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328583
关于积分的说明 10237312
捐赠科研通 3043737
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130