亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning techniques in PET/CT imaging: A comprehensive review from sinogram to image space

深度学习 人工智能 正电子发射断层摄影术 计算机科学 医学影像学 医学 医学物理学 图像处理 PET-CT 分割 模式 机器学习 放射科 图像(数学) 社会科学 社会学
作者
Maryam Fallahpoor,Subrata Chakraborty,Biswajeet Pradhan,Oliver Faust,Prabal Datta Barua,Hossein Chegeni,U. Rajendra Acharya
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107880-107880 被引量:24
标识
DOI:10.1016/j.cmpb.2023.107880
摘要

Positron emission tomography/computed tomography (PET/CT) is increasingly used in oncology, neurology, cardiology, and emerging medical fields. The success stems from the cohesive information that hybrid PET/CT imaging offers, surpassing the capabilities of individual modalities when used in isolation for different malignancies. However, manual image interpretation requires extensive disease-specific knowledge, and it is a time-consuming aspect of physicians' daily routines. Deep learning algorithms, akin to a practitioner during training, extract knowledge from images to facilitate the diagnosis process by detecting symptoms and enhancing images. This acquired knowledge aids in supporting the diagnosis process through symptom detection and image enhancement. The available review papers on PET/CT imaging have a drawback as they either included additional modalities or examined various types of AI applications. However, there has been a lack of comprehensive investigation specifically focused on the highly specific use of AI, and deep learning, on PET/CT images. This review aims to fill that gap by investigating the characteristics of approaches used in papers that employed deep learning for PET/CT imaging. Within the review, we identified 99 studies published between 2017 and 2022 that applied deep learning to PET/CT images. We also identified the best pre-processing algorithms and the most effective deep learning models reported for PET/CT while highlighting the current limitations. Our review underscores the potential of deep learning (DL) in PET/CT imaging, with successful applications in lesion detection, tumor segmentation, and disease classification in both sinogram and image spaces. Common and specific pre-processing techniques are also discussed. DL algorithms excel at extracting meaningful features, and enhancing accuracy and efficiency in diagnosis. However, limitations arise from the scarcity of annotated datasets and challenges in explainability and uncertainty. Recent DL models, such as attention-based models, generative models, multi-modal models, graph convolutional networks, and transformers, are promising for improving PET/CT studies. Additionally, radiomics has garnered attention for tumor classification and predicting patient outcomes. Ongoing research is crucial to explore new applications and improve the accuracy of DL models in this rapidly evolving field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容的招牌完成签到,获得积分10
40秒前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
枯叶蝶完成签到 ,获得积分10
1分钟前
嘟嘟完成签到 ,获得积分10
2分钟前
zhongyaosyj完成签到,获得积分10
2分钟前
XIN完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
脑洞疼应助TianY天翊采纳,获得10
3分钟前
李健应助炙热的千亦采纳,获得10
3分钟前
3分钟前
TianY天翊发布了新的文献求助10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
TianY天翊完成签到,获得积分10
3分钟前
夏花般灿烂完成签到,获得积分10
4分钟前
科研通AI6应助ryf采纳,获得10
4分钟前
4分钟前
Funnymudpee发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
ryf发布了新的文献求助10
4分钟前
xxxxxxh发布了新的文献求助30
4分钟前
xxxxxxh完成签到,获得积分10
4分钟前
4分钟前
Dr发布了新的文献求助10
5分钟前
马宁婧完成签到 ,获得积分10
5分钟前
Dr完成签到,获得积分10
5分钟前
六六完成签到 ,获得积分10
5分钟前
Hello应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
虚心的靖仇完成签到,获得积分20
6分钟前
孝陵卫黑旋风完成签到,获得积分0
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324080
求助须知:如何正确求助?哪些是违规求助? 4465100
关于积分的说明 13894130
捐赠科研通 4356903
什么是DOI,文献DOI怎么找? 2393083
邀请新用户注册赠送积分活动 1386580
关于科研通互助平台的介绍 1356862