Multi-Agent Constrained Policy Optimization for Conflict-Free Management of Connected Autonomous Vehicles at Unsignalized Intersections

强化学习 交叉口(航空) 计算机科学 数学优化 约束(计算机辅助设计) 动态规划 马尔可夫决策过程 马尔可夫过程 运筹学 工程类 人工智能 运输工程 数学 算法 机械工程 统计
作者
Rui Zhao,Yun Li,Fei Gao,Zhenhai Gao,Tianyao Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5374-5388 被引量:3
标识
DOI:10.1109/tits.2023.3331723
摘要

Autonomous Intersection Management (AIM) systems present a new paradigm for conflict-free cooperation of connected autonomous vehicles (CAVs) at road intersections, the aim of which is to eliminate collisions and improve the traffic efficiency and ride comfort. Given the challenges of current centralized coordination methods in balancing high computational efficiency and robust safety assurance, this paper proposes an innovative conflict-free management scheme for CAVs at unsignalized intersections, leveraging safe multi-agent deep reinforcement learning (MADRL). Firstly, we formulate the safe MADRL problem as a constrained Markov game (CMG) and then transform the AIM problem into a CMG by carefully designing state, action, reward, and cost functions. Subsequently, we propose the Multi-Agent Constrained Policy Optimization (MACPO), specifically tailored to solve the CMG problem. MACPO incorporates safety constraints that further restrict the trust region formed by the Kullback-Leibler (KL) divergence, facilitating reinforcement learning policy updates that maximize performance while keeping constraint costs within their limit bounds. This leads us to introduce the MACPO-based AIM Algorithm. Finally, we train an AIM policy and compare its computation time, ride comfort, traffic efficiency, and safety with management schemes based on Model Predictive Control (MPC), Mixed Integer Programming (MIP), and non-safety-aware reinforcement learning. According to the results, compared with the MPC and MIP methods, our method has increased computational efficiency by 65.22 times and 731.52 times respectively, and has improved traffic efficiency by 2.41 times and 1.80 times respectively. In contrast to the non-safety awareness RL methods, our method achieves a zero collision rate for the first time, while also enhancing ride comfort, highlighting the advantages of using MACPO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zhe发布了新的文献求助10
刚刚
圈圈完成签到,获得积分10
刚刚
柿安完成签到,获得积分10
刚刚
刚刚
1秒前
王子完成签到,获得积分10
1秒前
1秒前
zyk完成签到,获得积分20
2秒前
2秒前
天真玲完成签到,获得积分10
3秒前
3秒前
3秒前
zx发布了新的文献求助10
4秒前
刘鹏宇完成签到,获得积分10
4秒前
激动的小海豚完成签到,获得积分20
4秒前
4秒前
Ytion发布了新的文献求助20
4秒前
爱与感谢完成签到 ,获得积分10
4秒前
慕青应助高兴微笑采纳,获得10
5秒前
6秒前
雪茶发布了新的文献求助20
6秒前
猪猪hero发布了新的文献求助10
6秒前
6秒前
啦啦啦完成签到,获得积分10
6秒前
7秒前
曹原阁完成签到,获得积分10
7秒前
8秒前
醉了只鹿完成签到,获得积分10
8秒前
A高完成签到,获得积分10
8秒前
9秒前
刘鹏宇发布了新的文献求助10
9秒前
赘婿应助没名字采纳,获得10
9秒前
10秒前
曹原阁发布了新的文献求助10
10秒前
科研助手6应助Zhe采纳,获得20
10秒前
顾矜应助马桶盖盖子采纳,获得10
11秒前
man完成签到 ,获得积分10
11秒前
自然的菲鹰完成签到,获得积分10
11秒前
11秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816382
求助须知:如何正确求助?哪些是违规求助? 3359882
关于积分的说明 10405195
捐赠科研通 3077893
什么是DOI,文献DOI怎么找? 1690372
邀请新用户注册赠送积分活动 813754
科研通“疑难数据库(出版商)”最低求助积分说明 767819