MV-ReID: 3D Multi-view Transformation Network for Occluded Person Re-Identification

计算机科学 人工智能 RGB颜色模型 渲染(计算机图形) 计算机视觉 杠杆(统计) 网格 转化(遗传学) 水准点(测量) 鉴定(生物学) 模式识别(心理学) 数学 生物化学 化学 植物 几何学 大地测量学 生物 基因 地理
作者
Zaiyang Yu,Prayag Tiwari,Luyang Hou,Lusi Li,Weijun Li,Limin Jiang,Xin Ning
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111200-111200 被引量:25
标识
DOI:10.1016/j.knosys.2023.111200
摘要

Re-identification (ReID) of occluded persons is a challenging task due to the loss of information in scenes with occlusions. Most existing methods for occluded ReID use 2D-based network structures to directly extract representations from 2D RGB (red, green, and blue) images, which can result in reduced performance in occluded scenes. However, since a person is a 3D non-grid object, learning semantic representations in a 2D space can limit the ability to accurately profile an occluded person. Therefore, it is crucial to explore alternative approaches that can effectively handle occlusions and leverage the full 3D nature of a person. To tackle these challenges, in this study, we employ a 3D view-based approach that fully utilizes the geometric information of 3D objects while leveraging advancements in 2D-based networks for feature extraction. Our study is the first to introduce a 3D view-based method in the areas of holistic and occluded ReID. To implement this approach, we propose a random rendering strategy that converts 2D RGB images into 3D multi-view images. We then use a 3D Multi-View Transformation Network for ReID (MV-ReID) to group and aggregate these images into a unified feature space. Compared to 2D RGB images, multi-view images can reconstruct occluded portions of a person in 3D space, enabling a more comprehensive understanding of occluded individuals. The experiments on benchmark datasets demonstrate that the proposed method achieves state-of-the-art results on occluded ReID tasks and exhibits competitive performance on holistic ReID tasks. These results also suggest that our approach has the potential to solve occlusion problems and contribute to the field of ReID. The source code and dataset are available at https://github.com/yuzaiyang123/MV-Reid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
问之发布了新的文献求助10
2秒前
2秒前
英吉利25发布了新的文献求助10
2秒前
斯文败类应助岸边渔客采纳,获得10
3秒前
刘艺丹完成签到 ,获得积分10
3秒前
慈祥的爆米花完成签到,获得积分10
4秒前
顺意完成签到,获得积分20
6秒前
lin发布了新的文献求助10
7秒前
Enssy完成签到,获得积分10
8秒前
8秒前
9秒前
羞涩的高山完成签到,获得积分10
10秒前
曾经蘑菇应助顺意采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
JUNE发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
Lv完成签到,获得积分10
15秒前
15秒前
GLM发布了新的文献求助10
16秒前
wzw完成签到,获得积分10
16秒前
16秒前
20秒前
传奇3应助哈哈王采纳,获得10
22秒前
paiO_0完成签到,获得积分10
22秒前
22秒前
24秒前
科研通AI6.1应助Jmf采纳,获得10
25秒前
25秒前
25秒前
time完成签到,获得积分10
27秒前
道道sy发布了新的文献求助10
28秒前
高贵秋柳发布了新的文献求助20
28秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
29秒前
Hello应助科研通管家采纳,获得10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
李健应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5806039
求助须知:如何正确求助?哪些是违规求助? 5853369
关于积分的说明 15517757
捐赠科研通 4931166
什么是DOI,文献DOI怎么找? 2655010
邀请新用户注册赠送积分活动 1601733
关于科研通互助平台的介绍 1556801