Deep Representation Learning with Sample Generation and Augmented Attention Module for Imbalanced ECG Classification

心跳 计算机科学 人工智能 过采样 代表(政治) 机器学习 班级(哲学) 深度学习 采样(信号处理) 特征(语言学) 模式识别(心理学) 数据挖掘 计算机视觉 计算机网络 语言学 哲学 计算机安全 带宽(计算) 滤波器(信号处理) 政治 政治学 法学
作者
Muhammad Zubair,Sungpil Woo,Sunhwan Lim,Daeyoung Kim
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:8
标识
DOI:10.1109/jbhi.2023.3325540
摘要

Developing an efficient heartbeat monitoring system has become a focal point in numerous healthcare applications. Specifically, in the last few years, heartbeat classification for arrhythmia detection has gained considerable interest from researchers. This paper presents a novel deep representation learning method for the efficient detection of arrhythmic beats. To mitigate the issues associated with the imbalanced data distribution, a novel re-sampling strategy is introduced. Unlike the existing oversampling methods, the proposed technique transforms majority-class samples into minority-class samples with a novel translation loss function. This approach assists the model in learning a more generalized representation of crucially important minority class samples. Moreover, by exploiting an auxiliary feature, an augmented attention module is designed that focuses on the most relevant and target-specific information. We adopted an inter-patient classification paradigm to evaluate the proposed method. The experimental results of this study on the MIT-BIH arrhythmia database clearly indicate that the proposed model with augmented attention mechanism and over-sampling strategy significantly learns a balanced deep representation and improves the classification performance of vital heartbeats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子卿发布了新的文献求助10
1秒前
大模型应助魁梧的元蝶采纳,获得10
2秒前
nenoaowu发布了新的文献求助10
2秒前
4秒前
5秒前
6秒前
8秒前
8秒前
俊逸的香萱完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
科研助手6应助刘老头采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
CipherSage应助zc采纳,获得10
11秒前
11秒前
12秒前
12秒前
cfn456发布了新的文献求助30
13秒前
无花果应助小白兔采纳,获得10
14秒前
桃野发布了新的文献求助10
14秒前
酷波er应助顺心凡采纳,获得10
14秒前
15秒前
cdercder应助nenoaowu采纳,获得10
15秒前
JamesPei应助nenoaowu采纳,获得10
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800124
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10324980
捐赠科研通 3061918
什么是DOI,文献DOI怎么找? 1680596
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763509