Intrinsically conductive and nano-scale reconfigurable liquid metal nano-capsules

材料科学 纳米技术 纳米- 纳米颗粒 弹性体 导电体 纳米尺度 氧化物 化学工程 复合材料 冶金 工程类
作者
Dan Xu,Jinwei Cao,Fengyuan Zhang,Xin Gao,Shengbin Li,Fei Liu,Shengding Wang,Shiying Li,Jinyun Liu,Yuanzhao Wu,Yiwei Liu,Jie Shang,Run‐Wei Li
出处
期刊:Materials Today Physics [Elsevier BV]
卷期号:38: 101239-101239 被引量:3
标识
DOI:10.1016/j.mtphys.2023.101239
摘要

Liquid metal (LM), particularly Gallium-based alloy, has emerged as an indispensable material for artificial skins, offering vast potential in wearable prophylactic medicine, AI-based human-machine interfaces, bodily-kinesthetic monitoring, etc. Nanosized LM has been adopted to facilitate its processability in various LM-elastomer interfaces, stretchable circuits, and dynamic self-healing devices. However, a naturally formed electrical-passive oxidation layer (Ga2O3) on LM nanoparticles would impede electron transportation, rendering the original LM nanoparticles nonconductive even when they are compacted together. Attempts, e.g., mechanical activation and chemical-assisted erosion, have been developed to remove this electrical barrier, but lead to other issues, including circuit short, weaken interfacial bonding, and unforeseen activation. Here, intrinsically conductive LM nano-capsules were proposed to address these issues. These nano-capsules are in situ encapsulated by platinum@redox graphene oxide (Pt/rGO) and exhibit an intrinsically high conductivity (up to 1.2 × 106 S m−1). The encapsulation process was assisted by oxidation layer thinning and particle-to-particle bridging through polyelectrolyte (PSS). As a result, the Pt/rGO tow-dimensional layer effectively can be encapsulated on LM nanoparticles via electrostatic interaction to enable conductivity of the shells of nano-capsules. And the highly compact and reconfigurable profile of the LM nano-capsules can be developed for highly conductive circuits. The LM nano-capsules maintain chemical and mechanical stability against external stimuli, including long-term exposure (up to 7 days in solvent and 30 days in air) and mechanical deformations (ΔR/R0 < 4% after 5000 stretching cycles under strain of 100%). And the LM capsule ink shows easy access to design printable circuits (∼70 μm) and fabricate electronic tattoos for robotic sensory skins and real-time health-monitoring technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
笨笨的完成签到,获得积分10
2秒前
乐乐应助周周采纳,获得10
2秒前
亚秋完成签到,获得积分10
3秒前
czb666完成签到,获得积分20
4秒前
吃点水果保护局完成签到 ,获得积分10
4秒前
4秒前
xuan发布了新的文献求助10
4秒前
4秒前
亚秋发布了新的文献求助10
8秒前
10秒前
Desamin发布了新的文献求助10
10秒前
咔嚓完成签到,获得积分10
10秒前
11秒前
12秒前
韩涵发布了新的文献求助10
13秒前
orixero应助小灯采纳,获得10
13秒前
送送发布了新的文献求助10
15秒前
周周发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
赘婿应助慕燕琼采纳,获得10
18秒前
minmin完成签到,获得积分10
19秒前
劈里啪啦滴毛毛完成签到,获得积分10
19秒前
Harden完成签到,获得积分10
20秒前
可爱的函函应助车谷子采纳,获得10
20秒前
烟花应助nihao采纳,获得10
21秒前
weiwei发布了新的文献求助10
21秒前
21秒前
欢喜的天空完成签到,获得积分20
22秒前
ayzl发布了新的文献求助10
23秒前
SciGPT应助dd采纳,获得20
23秒前
共享精神应助Desamin采纳,获得10
24秒前
lizhiqian2024发布了新的文献求助10
26秒前
27秒前
思源应助小灯采纳,获得10
31秒前
YHDing关注了科研通微信公众号
31秒前
Accept2024发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781766
求助须知:如何正确求助?哪些是违规求助? 3327359
关于积分的说明 10230631
捐赠科研通 3042226
什么是DOI,文献DOI怎么找? 1669897
邀请新用户注册赠送积分活动 799391
科研通“疑难数据库(出版商)”最低求助积分说明 758792