异核分子
催化作用
X射线光电子能谱
密度泛函理论
扫描透射电子显微镜
材料科学
电催化剂
吸收(声学)
Atom(片上系统)
光谱学
吸收光谱法
分析化学(期刊)
化学
透射电子显微镜
物理化学
电极
纳米技术
计算化学
物理
核磁共振波谱
电化学
核磁共振
立体化学
有机化学
复合材料
量子力学
计算机科学
嵌入式系统
作者
Song Lu,Michal Mazur,Kun Guo,Dragos Constantin Stoian,Minfen Gu,Wakshum Mekonnen Tucho,Zhixin Yu
出处
期刊:Small
[Wiley]
日期:2023-11-10
被引量:3
标识
DOI:10.1002/smll.202309251
摘要
Abstract Conversion of CO 2 into value‐added products by electrocatalysis provides a promising way to mitigate energy and environmental problems. However, it is greatly limited by the scaling relationship between the adsorption strength of intermediates. Herein, Mn and Ni single‐atom catalysts, homonuclear dual‐atom catalysts (DACs), and heteronuclear DACs are synthesized. Aberration‐corrected annular dark‐field scanning transmission electron microscopy (ADF‐STEM) and X‐ray absorption spectroscopy characterization uncovered the existence of the Mn─Ni pair in Mn─Ni DAC. X‐ray photoelectron spectroscopy and X‐ray absorption near‐edge spectroscopy reveal that Mn donated electrons to Ni atoms in Mn─Ni DAC. Consequently, Mn─Ni DAC displays the highest CO Faradaic efficiency of 98.7% at −0.7 V versus reversible hydrogen electrode (vs RHE) with CO partial current density of 16.8 mA cm −2 . Density functional theory calculations disclose that the scaling relationship between the binding strength of intermediates is broken, resulting in superior performance for ECR to CO over Mn─Ni─NC catalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI