Deep Learning-based Image Cytometry Using a Bit-pattern Kernel-filtering Algorithm to Avoid Multi-counted Cell Determination

人工智能 算法 免疫组织化学 计算机科学 深度学习 阶段(地层学) 细胞仪 细胞计数 流式细胞术 病理 机器学习 医学 癌症 生物 细胞周期 免疫学 内科学 古生物学
作者
Tomoki Abe,Kimihiro Yamashita,TORU NAGASAKA,Mitsugu Fujita,KYOUSUKE AGAWA,MASAYUKI ANDO,Tomosuke Mukoyama,Kota Yamada,SOUICHIRO MIYAKE,Masafumi Saito,Ryuichiro Sawada,Hiroshi Hasegawa,Takeru Matsuda,Takashi Kato,Hitoshi Harada,Naoki Urakawa,Hironobu Goto,Shingo Kanaji,Hiroaki Yanagimoto,Taro Oshikiri
出处
期刊:Anticancer Research [International Institute of Anticancer Research (IIAR) Conferences 1997. Athens, Greece. Abstracts]
卷期号:43 (8): 3755-3761 被引量:1
标识
DOI:10.21873/anticanres.16560
摘要

Background/Aim: In pathology, the digitization of tissue slide images and the development of image analysis by deep learning have dramatically increased the amount of information obtainable from tissue slides. This advancement is anticipated to not only aid in pathological diagnosis, but also to enhance patient management. Deep learning-based image cytometry (DL-IC) is a technique that plays a pivotal role in this process, enabling cell identification and counting with precision. Accurate cell determination is essential when using this technique. Herein, we aimed to evaluate the performance of our DL-IC in cell identification. Materials and Methods: Cu-Cyto, a DL-IC with a bit-pattern kernel-filtering algorithm designed to help avoid multi-counted cell determination, was developed and evaluated for performance using tumor tissue slide images with immunohistochemical staining (IHC). Results: The performances of three versions of Cu-Cyto were evaluated according to their learning stages. In the early stage of learning, the F1 score for immunostained CD8+ T cells (0.343) was higher than the scores for non-immunostained cells [adenocarcinoma cells (0.040) and lymphocytes (0.002)]. As training and validation progressed, the F1 scores for all cells improved. In the latest stage of learning, the F1 scores for adenocarcinoma cells, lymphocytes, and CD8+ T cells were 0.589, 0.889, and 0.911, respectively. Conclusion: Cu-Cyto demonstrated good performance in cell determination. IHC can boost learning efficiencies in the early stages of learning. Its performance is expected to improve even further with continuous learning, and the DL-IC can contribute to the implementation of precision oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aki发布了新的文献求助10
1秒前
2秒前
李明泰发布了新的文献求助10
5秒前
6秒前
他们叫我小伟完成签到 ,获得积分10
6秒前
7秒前
李明泰完成签到,获得积分10
11秒前
754完成签到,获得积分10
11秒前
12秒前
12秒前
凑阿库娅发布了新的文献求助10
12秒前
自信的坤完成签到,获得积分10
12秒前
结实罡发布了新的文献求助10
13秒前
隐形曼青应助XxxxxtPuCO采纳,获得10
14秒前
17秒前
长夜完成签到 ,获得积分10
17秒前
nishishui完成签到 ,获得积分10
18秒前
20秒前
21秒前
复杂的鸵鸟完成签到,获得积分10
22秒前
24秒前
清歌扶酒发布了新的文献求助10
24秒前
大模型应助结实罡采纳,获得10
25秒前
Ann完成签到,获得积分10
26秒前
26秒前
慕青应助甜美的芷采纳,获得10
27秒前
28秒前
叁零发布了新的文献求助10
29秒前
xuxuxu发布了新的文献求助10
29秒前
麦乐迪完成签到 ,获得积分10
30秒前
wanci应助xifan采纳,获得10
30秒前
32秒前
结实罡完成签到,获得积分20
34秒前
汉堡包应助勤恳的宛菡采纳,获得10
37秒前
CipherSage应助syalonyui采纳,获得10
37秒前
37秒前
Pisbaguette完成签到,获得积分10
38秒前
Lychee完成签到 ,获得积分10
41秒前
希望天下0贩的0应助Hans采纳,获得10
42秒前
42秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120642
求助须知:如何正确求助?哪些是违规求助? 3658796
关于积分的说明 11582141
捐赠科研通 3360374
什么是DOI,文献DOI怎么找? 1846356
邀请新用户注册赠送积分活动 911171
科研通“疑难数据库(出版商)”最低求助积分说明 827339