清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A data expansion technique based on training and testing sample to boost the detection of SSVEPs for brain-computer interfaces

脑-机接口 计算机科学 过度拟合 人工智能 脑电图 机器学习 模式识别(心理学) 语音识别 人工神经网络 心理学 精神科
作者
Xiaolin Xiao,Lijie Wang,Minpeng Xu,Kun Wang,Tzyy‐Ping Jung,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066017-066017 被引量:3
标识
DOI:10.1088/1741-2552/acf7f6
摘要

Abstract Objective. Currently, steady-state visual evoked potentials (SSVEPs)-based brain-computer interfaces (BCIs) have achieved the highest interaction accuracy and speed among all BCI paradigms. However, its decoding efficacy depends deeply on the number of training samples, and the system performance would have a dramatic drop when the training dataset decreased to a small size. To date, no study has been reported to incorporate the unsupervised learning information from testing trails into the construction of supervised classification model, which is a potential way to mitigate the overfitting effect of limited samples. Approach. This study proposed a novel method for SSVEPs detection, i.e. cyclic shift trials (CSTs), which could combine unsupervised learning information from test trials and supervised learning information from train trials. Furthermore, since SSVEPs are time-locked and phase-locked to the onset of specific flashes, CST could also expand training samples on the basis of its regularity and periodicity. In order to verify the effectiveness of CST, we designed an online SSVEP-BCI system, and tested this system combined CST with two common classification algorithms, i.e. extended canonical correlation analysis and ensemble task-related component analysis. Main results. CST could significantly enhance the signal to noise ratios of SSVEPs and improve the performance of systems especially for the condition of few training samples and short stimulus time. The online information transfer rate could reach up to 236.19 bits min −1 using 36 s calibration time of only one training sample for each category. Significance. The proposed CST method can take full advantages of supervised learning information from training samples and unsupervised learning information of testing samples. Furthermore, it is a data expansion technique, which can enhance the SSVEP characteristics and reduce dependence on sample size. Above all, CST is a promising method to improve the performance of SSVEP-based BCI without any additional experimental burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
Jack80发布了新的文献求助100
12秒前
29秒前
joycelin发布了新的文献求助10
33秒前
joycelin完成签到,获得积分10
48秒前
1分钟前
领导范儿应助lysun采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
SYLH应助Chen采纳,获得10
2分钟前
菁菁发布了新的文献求助10
3分钟前
Sunny完成签到,获得积分10
3分钟前
知行者完成签到 ,获得积分10
3分钟前
通科研完成签到 ,获得积分10
4分钟前
XD824发布了新的文献求助10
4分钟前
OMR123完成签到,获得积分10
4分钟前
xun关闭了xun文献求助
4分钟前
糟糕的翅膀完成签到,获得积分10
6分钟前
小学生的练习簿完成签到,获得积分10
6分钟前
努力努力再努力完成签到,获得积分10
6分钟前
gszy1975完成签到,获得积分10
7分钟前
宇文非笑完成签到 ,获得积分0
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
gwbk完成签到,获得积分10
8分钟前
xun发布了新的文献求助10
8分钟前
8分钟前
我是老大应助xun采纳,获得10
8分钟前
实力不允许完成签到 ,获得积分10
9分钟前
rick3455完成签到 ,获得积分10
9分钟前
9分钟前
xun发布了新的文献求助10
9分钟前
星辰大海应助xun采纳,获得10
9分钟前
迷茫的一代完成签到,获得积分10
10分钟前
10分钟前
xun发布了新的文献求助10
10分钟前
10分钟前
jane发布了新的文献求助10
10分钟前
科研通AI5应助jane采纳,获得10
10分钟前
淡定的思松完成签到 ,获得积分10
11分钟前
高数数完成签到 ,获得积分10
11分钟前
像猫的狗完成签到 ,获得积分10
11分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784800
求助须知:如何正确求助?哪些是违规求助? 3330056
关于积分的说明 10244242
捐赠科研通 3045404
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800592
科研通“疑难数据库(出版商)”最低求助积分说明 759508