PCBSegClassNet — A light-weight network for segmentation and classification of PCB component

分割 计算机科学 人工智能 模式识别(心理学) 组分(热力学) 背景(考古学) 掷骰子 图像分割 像素 深度学习 数学 地理 物理 热力学 几何学 考古
作者
Dhruv Makwana,Sai Chandra Teja R,Sparsh Mittal
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:225: 120029-120029 被引量:15
标识
DOI:10.1016/j.eswa.2023.120029
摘要

PCB component classification and segmentation can be helpful for PCB waste recycling. However, the variance in shapes and sizes of PCB components presents crucial challenges. We propose PCBSegClassNet, a novel deep neural network for PCB component classification and segmentation. The network uses a two-branch design that captures the global context in one branch and spatial features in the other. The fusion of two branches allows the effective segmentation of components of various sizes and shapes. We reinterpret the skip connections as a learning module to learn features efficiently. We propose a texture enhancement module that utilizes texture information and spatial features to obtain precise boundaries of components. We introduce a loss function that combines DICE, IoU, and SSIM loss functions to guide the training process for precise pixel-level, patch-level, and map-level segmentation. Our network outperforms all previous state-of-the-art networks on both segmentation and classification tasks. For example, it achieves a DICE score of 96.3% and IoU score of 92.7% on the FPIC dataset. From the FPIC dataset, we crop the images of 25 component classes and term the resultant 19158 images as the “FPIC-Component dataset” (we release scripts for obtaining this dataset from FPIC dataset). On this dataset, our network achieves a classification accuracy of 95.2%. Our model is much more light-weight than previous networks and achieves a segmentation throughput of 122 frame-per-second on a single GPU. We also showcase its ability to count the number of each component on a PCB. The code is available at https://github.com/CandleLabAI/PCBSegClassNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀的草莓完成签到,获得积分10
刚刚
5秒前
goblue完成签到,获得积分10
5秒前
6秒前
8秒前
10秒前
Hello应助开朗芸采纳,获得10
11秒前
明哥发布了新的文献求助10
12秒前
柳青青发布了新的文献求助10
13秒前
youngfer发布了新的文献求助10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
17秒前
科目三应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得200
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
雨霁发布了新的文献求助10
17秒前
丘比特应助快乐冰激凌采纳,获得10
19秒前
Ling发布了新的文献求助10
19秒前
20秒前
安内大大发布了新的文献求助10
20秒前
开朗芸完成签到,获得积分10
21秒前
金鱼咕噜噜luu完成签到,获得积分10
21秒前
不知道起啥名字完成签到 ,获得积分10
21秒前
充电宝应助囙氼仚采纳,获得10
21秒前
开朗芸发布了新的文献求助10
24秒前
雨声完成签到,获得积分10
24秒前
CAOHOU应助明哥采纳,获得10
26秒前
Jonathan完成签到,获得积分10
26秒前
26秒前
ccc发布了新的文献求助10
28秒前
美好斓发布了新的文献求助10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4129433
求助须知:如何正确求助?哪些是违规求助? 3666485
关于积分的说明 11599657
捐赠科研通 3365082
什么是DOI,文献DOI怎么找? 1849020
邀请新用户注册赠送积分活动 912857
科研通“疑难数据库(出版商)”最低求助积分说明 828259