PCBSegClassNet — A light-weight network for segmentation and classification of PCB component

分割 计算机科学 人工智能 模式识别(心理学) 组分(热力学) 背景(考古学) 掷骰子 图像分割 像素 深度学习 数学 地理 几何学 热力学 物理 考古
作者
Dhruv Makwana,Sai Chandra Teja R,Sparsh Mittal
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:225: 120029-120029 被引量:12
标识
DOI:10.1016/j.eswa.2023.120029
摘要

PCB component classification and segmentation can be helpful for PCB waste recycling. However, the variance in shapes and sizes of PCB components presents crucial challenges. We propose PCBSegClassNet, a novel deep neural network for PCB component classification and segmentation. The network uses a two-branch design that captures the global context in one branch and spatial features in the other. The fusion of two branches allows the effective segmentation of components of various sizes and shapes. We reinterpret the skip connections as a learning module to learn features efficiently. We propose a texture enhancement module that utilizes texture information and spatial features to obtain precise boundaries of components. We introduce a loss function that combines DICE, IoU, and SSIM loss functions to guide the training process for precise pixel-level, patch-level, and map-level segmentation. Our network outperforms all previous state-of-the-art networks on both segmentation and classification tasks. For example, it achieves a DICE score of 96.3% and IoU score of 92.7% on the FPIC dataset. From the FPIC dataset, we crop the images of 25 component classes and term the resultant 19158 images as the “FPIC-Component dataset” (we release scripts for obtaining this dataset from FPIC dataset). On this dataset, our network achieves a classification accuracy of 95.2%. Our model is much more light-weight than previous networks and achieves a segmentation throughput of 122 frame-per-second on a single GPU. We also showcase its ability to count the number of each component on a PCB. The code is available at https://github.com/CandleLabAI/PCBSegClassNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗罗完成签到,获得积分10
刚刚
pluto应助zhiwei采纳,获得10
1秒前
1秒前
哈密哈密完成签到,获得积分10
1秒前
舒心的初露完成签到,获得积分10
2秒前
5秒前
麦子发布了新的文献求助10
7秒前
7秒前
Lee0923发布了新的文献求助10
8秒前
Wait for a M完成签到 ,获得积分10
8秒前
小肥羊发布了新的文献求助10
8秒前
bkagyin应助KanmenRider采纳,获得10
8秒前
1234发布了新的文献求助10
8秒前
磊少关注了科研通微信公众号
9秒前
科研通AI2S应助xd采纳,获得10
9秒前
深情安青应助90采纳,获得10
10秒前
乐枳完成签到 ,获得积分10
10秒前
jubaoswag发布了新的文献求助20
11秒前
含氢完成签到,获得积分10
12秒前
王新彤发布了新的文献求助10
12秒前
飘逸的落叶松完成签到 ,获得积分10
13秒前
充电宝应助胖子东采纳,获得10
15秒前
15秒前
15秒前
Hello应助gfbh采纳,获得10
16秒前
18秒前
manan发布了新的文献求助10
20秒前
烟花应助乐乐采纳,获得10
20秒前
www完成签到,获得积分10
21秒前
26秒前
Ice_zhao完成签到,获得积分10
26秒前
27秒前
小肥羊发布了新的文献求助10
28秒前
卡奇Mikey完成签到,获得积分10
30秒前
lemonade完成签到,获得积分10
31秒前
王新彤完成签到,获得积分10
33秒前
大灰机小灰机完成签到,获得积分10
33秒前
斯文败类应助一树面包人采纳,获得10
35秒前
CodeCraft应助ZZZZZ采纳,获得10
35秒前
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742