Defect detection of photovoltaic modules based on improved VarifocalNet

瓶颈 光伏系统 计算机科学 卷积(计算机科学) 特征(语言学) 领域(数学) 人工智能 模式识别(心理学) 嵌入式系统 工程类 数学 电气工程 语言学 哲学 人工神经网络 纯数学
作者
Yanfei Jia,Guangda Chen,Liquan Zhao
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:7
标识
DOI:10.1038/s41598-024-66234-3
摘要

Abstract Detecting and replacing defective photovoltaic modules is essential as they directly impact power generation efficiency. Many current deep learning-based methods for detecting defects in photovoltaic modules focus solely on either detection speed or accuracy, which limits their practical application. To address this issue, an improved VarifocalNet has been proposed to enhance both the detection speed and accuracy of defective photovoltaic modules. Firstly, a new bottleneck module is designed to replace the first bottleneck module of the last stage convolution group in the backbone. This new module includes both standard convolution and dilated convolution, enabling an increase in network depth and receptive field without reducing the output feature map size. This improvement can help to enhance the accuracy of defect detection for photovoltaic modules. Secondly, another bottleneck module is also designed and used to replace the original bottleneck module used in the fourth stage convolution group of the backbone. This new module has smaller parameters than the original bottleneck module, which is useful to improve the defect detection speed of the photovoltaic module. Thirdly, a feature interactor is designed in the detection head to enhance feature expression in the classification branch. This helps improve detection accuracy. Besides, an improved intersection over union is proposed and introduced into the loss function to measure the difference between the predicted and ground truth boxes. This is useful for improving defect detection accuracy. Compared to other methods, the proposed method has the highest detection accuracy. Additionally, it also has a faster detection speed than other methods except for the DDH-YOLOv5 method and the improved YOLOv7 method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zq完成签到 ,获得积分10
1秒前
5476完成签到,获得积分10
5秒前
8秒前
眼睛大的怀曼完成签到,获得积分10
8秒前
英俊的铭应助忧虑的代容采纳,获得10
9秒前
圣甲虫完成签到 ,获得积分10
13秒前
HUI完成签到,获得积分10
13秒前
包容的雅青完成签到,获得积分10
13秒前
黎琨烨发布了新的文献求助10
14秒前
着急的青枫应助hadron采纳,获得10
19秒前
了了完成签到,获得积分10
19秒前
20秒前
22秒前
可爱的函函应助糖糖钰采纳,获得30
23秒前
23秒前
脑洞疼应助你好采纳,获得10
24秒前
搜集达人应助Chloe采纳,获得10
25秒前
25秒前
27秒前
28秒前
小懒星发布了新的文献求助20
28秒前
29秒前
薄荷味完成签到 ,获得积分0
29秒前
29秒前
dadada发布了新的文献求助10
29秒前
29秒前
万能图书馆应助许锐采纳,获得30
31秒前
Comet发布了新的文献求助10
32秒前
32秒前
32秒前
南瓜气气发布了新的文献求助10
34秒前
34秒前
风中的怜阳完成签到,获得积分10
35秒前
zhangxin发布了新的文献求助10
35秒前
你好发布了新的文献求助10
35秒前
李爱国应助君临采纳,获得10
36秒前
Ruyii应助科研通管家采纳,获得10
36秒前
丘比特应助科研通管家采纳,获得10
36秒前
JamesPei应助科研通管家采纳,获得10
36秒前
Ava应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4762321
求助须知:如何正确求助?哪些是违规求助? 4101842
关于积分的说明 12692566
捐赠科研通 3817963
什么是DOI,文献DOI怎么找? 2107423
邀请新用户注册赠送积分活动 1132048
关于科研通互助平台的介绍 1011106