A Novel Integral Image Recognition Method and System with Verification Measurement by Sensors for Hot Steel-Bar Stack Accident Detection

堆栈(抽象数据类型) 巴(单位) 计算机科学 图像(数学) 钢筋 计算机硬件 嵌入式系统 计算机视觉 人工智能 工程类 结构工程 操作系统 物理 气象学
作者
Wen Ren,Kun‐Chieh Wang,Long Wu,Jian-Zhou Pan,Hao Gao,Yao Li
出处
期刊:Sensors and Materials [MYU K.K.]
卷期号:36 (6): 2297-2297
标识
DOI:10.18494/sam4870
摘要

Bar-type steel is commonly used in engineering facilities, which is made from the raw material of steel wire with high-speed rolling.A hot steel-bar stack (HSBS) accident is a serious accident wherein a hot steel bar flies out from a bar stack fixed on a trolley during manufacturing.If not prevented on time, it can damage production equipment and cause fire and personal injury.At present, the monitoring and identification of HSBS accidents during the rolling manufacturing process are still limited to manual observation.We lack advanced monitoring and identification methods.Finding an effective, accurate, and rapid identification method as well as a treatment method for detecting an HSBS accident in the rolling manufacturing process is an urgent issue.To solve this problem, we propose a novel three-in-one image recognition (TIOIR) method based on the bagging and boosting ensemble learning schemes.The TIOIR method integrates the maximum distance positioning, corner detection positioning, and ablation methods to better identify different features of HSBS images.Furthermore, we designed and built a fault diagnosis system of HSBS accident detection, which includes temperature and visual sensors, visual detection devices, and a remote control and computing unit embedded with our proposed TIOIR scheme.Through the operation of the fault diagnosis system, we carried out an actual identification experiment of HSBS accident detection in the rolling field, and the obtained realtime recognition rate was as high as 97%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
3秒前
霸气谷雪完成签到,获得积分10
4秒前
星辰大海应助AA采纳,获得10
5秒前
sorry完成签到,获得积分20
8秒前
bkagyin应助经久采纳,获得10
9秒前
Lucas应助隐形的凡阳采纳,获得10
9秒前
科研小辉完成签到,获得积分10
10秒前
11秒前
烟花应助lichun410932采纳,获得10
11秒前
13秒前
ALmighty完成签到,获得积分10
15秒前
replay完成签到,获得积分10
16秒前
pomelo发布了新的文献求助10
16秒前
16秒前
文文发布了新的文献求助30
18秒前
ttfakira完成签到,获得积分10
19秒前
21秒前
AA发布了新的文献求助10
23秒前
23秒前
kk2024完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
26秒前
pomelo完成签到,获得积分20
26秒前
文静勒应助TOM采纳,获得50
26秒前
wer完成签到 ,获得积分10
27秒前
文文完成签到,获得积分10
28秒前
ADGAI完成签到,获得积分10
29秒前
29秒前
饼子发布了新的文献求助10
29秒前
开心的耳机完成签到,获得积分10
30秒前
清脆如娆完成签到 ,获得积分10
30秒前
小朋友发布了新的文献求助10
31秒前
31秒前
bbsheng发布了新的文献求助10
31秒前
发酱完成签到,获得积分10
31秒前
33秒前
34秒前
zhonglv7应助怜然采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556203
求助须知:如何正确求助?哪些是违规求助? 4640817
关于积分的说明 14663035
捐赠科研通 4582830
什么是DOI,文献DOI怎么找? 2513629
邀请新用户注册赠送积分活动 1488255
关于科研通互助平台的介绍 1459006