材料科学
纳米颗粒
纳米技术
聚二甲基硅氧烷
光致发光
涂层
平版印刷术
聚合物
光电子学
化学工程
复合材料
工程类
作者
Junhu Cai,Wenzong Lai,Yu Chen,Xiang Zhang,Yaqian Zheng,Wenyan Zhang,Xiao‐Gang Chen,Yun Ye,Sheng Xu,Qun Yan,Tailiang Guo,Enguo Chen
标识
DOI:10.1002/lpor.202400298
摘要
Abstract Patterning is crucial for advancing perovskite materials into color conversion micro‐display applications, but achieving inkjet‐printed patterns with high performance and precision remains challenging. Here, novel CsPbBr 3 /PDMS nanoparticles as a promising candidate is proposed for achieving precise and perfect inkjet printing patterns. The as‐prepared nanoparticles ensure exceeding brightness, exceptional stability, uniform fluorescence emission, and high resolution reaching the highest performance of drop‐on‐demand inkjet printing. Specifically, the performance and stability of CsPbBr 3 /PDMS nanoparticles are enhanced through a two‐step optimization involving dodecyl benzene sulfonic acid (DBSA) ligand modification and polydimethylsiloxane (PDMS) in situ coating, resulting in the highest photoluminescence quantum yield (PLQY) of 92% among CsPbBr 3 /polymer core‐shell composites so far. The branched structure of DBSA and the PDMS shell provide steric hindrance and effectively prevent agglomeration during storage or patterning. The viscous PDMS coating inhibits the coffee ring effect, not only leading to excellent near‐unity uniform emission but also promoting the formation of smaller and more elaborate droplets, increasing the printing resolution by up to surprisingly 300%. Importantly, the impeccably displayed, high‐resolution patterns formed by versatile CsPbBr 3 /PDMS nanoparticles have demonstrated significant potential for high pixel density Micro‐LED displays, enabling efficient and stable color conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI