Retinal disease diagnosis with unsupervised Grad-CAM guided contrastive learning

计算机科学 视网膜 人工智能 疾病 无监督学习 自然语言处理 机器学习 模式识别(心理学) 医学 眼科 病理
作者
Zhongchen Zhao,Huai Chen,Yu‐Ping Wang,Deyu Meng,Qi Xie,Qi Yu,Lisheng Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:593: 127816-127816 被引量:4
标识
DOI:10.1016/j.neucom.2024.127816
摘要

To alleviate the reliance on expensive annotations, contrastive learning techniques have been applied to diagnose diseases from various types of medical images. However, popular contrastive learning methods, which generate positive pairs by random cropping, face challenges in diagnosing retinal diseases, due to the retinal disease's characteristic that retinal lesions are tiny and randomly distributed in abnormal fundus images. These lesions may be missed after random cropping, resulting in semantically inconsistent positive pairs that hinder the effectiveness of contrastive learning for retinal disease diagnosis. To address this issue, we propose a novel unsupervised gradient-weighted class activation mapping (Grad-CAM) strategy to roughly locate lesions, thereby suppressing or even eliminating semantically inconsistent positive pairs. Specifically, we develop a gradient-weighted Class Activation Map guided Contrastive Learning (CAMCL) method with two branches for the Grad-CAM based instance discrimination task and the k-nearest neighbors (KNN)-based cluster-wise discrimination task, respectively. By minimizing the KNN loss, the cluster-wise discrimination branch learns high-level representations containing class semantic information. This is then followed by gradient back-propagation to generate Grad-CAM heatmaps from unlabeled data. The generated heatmaps can highlight class-discriminative regions in abnormal fundus images (e.g., retinal lesions) to identify semantically consistent positive pairs while suppressing inconsistent ones. The semantically consistent positive pairs are then input to the instance discrimination task for contrastive learning. In this manner, the semantic inconsistency problem is relieved, and the improved contrastive learning pipeline can be effectively used for retinal disease diagnosis. Experimental results on five retinal disease classification datasets show that our model surpasses other contrastive learning methods, indicating a promising approach for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欢呼山雁发布了新的文献求助10
1秒前
2秒前
Godzilla发布了新的文献求助10
2秒前
2秒前
八九完成签到,获得积分20
3秒前
3秒前
鸢翔flybird发布了新的文献求助30
3秒前
敏感代云完成签到,获得积分10
3秒前
4秒前
不配.应助聪明的身影采纳,获得20
5秒前
隐形昊强完成签到,获得积分10
5秒前
Joy应助So1arAy采纳,获得10
6秒前
6秒前
6秒前
xxx完成签到,获得积分10
6秒前
大模型应助solitude采纳,获得10
7秒前
VitoLi发布了新的文献求助10
7秒前
7秒前
华仔应助cbx采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
Cullen发布了新的文献求助10
8秒前
wyz发布了新的文献求助10
8秒前
一路硕博应助JK2022采纳,获得10
10秒前
友好阁完成签到,获得积分10
11秒前
hoowy发布了新的文献求助10
11秒前
科研通AI6应助皇帝的床帘采纳,获得50
11秒前
朔风完成签到,获得积分10
13秒前
14秒前
夜神月发布了新的文献求助10
14秒前
Youcan完成签到 ,获得积分10
15秒前
一朵大牡丹关注了科研通微信公众号
15秒前
16秒前
solitude完成签到,获得积分20
16秒前
戏戏戏戏戏戏完成签到,获得积分10
16秒前
17秒前
space发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
传奇3应助欢呼山雁采纳,获得10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4232123
求助须知:如何正确求助?哪些是违规求助? 3765341
关于积分的说明 11831205
捐赠科研通 3424303
什么是DOI,文献DOI怎么找? 1879088
邀请新用户注册赠送积分活动 932014
科研通“疑难数据库(出版商)”最低求助积分说明 839447