抗菌肽
卷积神经网络
卷积(计算机科学)
仿真
模式识别(心理学)
鉴定(生物学)
特征提取
特征(语言学)
机器学习
人工智能
计算机科学
生物
肽
人工神经网络
生物化学
语言学
植物
哲学
经济
经济增长
作者
Mingyue He,Yongquan Jiang,Yan Yang,Kuanping Gong,Xin Jiang,Yuan Tian
标识
DOI:10.1021/acs.jpcb.4c07752
摘要
Antimicrobial peptides (AMPs) have important developmental prospects as potential candidates for novel antibiotics. Although many studies have been devoted to the identification of AMPs and the qualitative prediction of their functional activities, few methods address the quantitative prediction of their activity values. In this paper, we propose a regression model called MSCMamba, which fuses multiscale convolutional neural network with Mamba module to accurately predict the activity values of AMPs. AMPs sequences are feature-extracted by multiple encoding methods and fed into a multiscale convolutional network and a Mamba module to capture local and long-range dependent features, respectively. The model fuses these two outputs and predicts the activity values of AMPs through a linear layer. Experimental results show that MSCMamba outperforms the current state-of-the-art methods in several performance metrics, especially with an increase in R2 from 0.422 to 0.467, representing a 10.66% improvement. Additionally, we did a series of ablation experiments to verify the validity of each part of the MSCMamba model and the performance enhancement of feature diversification.This study provides a new method for activity prediction of AMPs, which is expected to accelerate the development of novel antibiotics.
科研通智能强力驱动
Strongly Powered by AbleSci AI