分割
细胞自动机
病变
计算机科学
人工智能
扩散
模式识别(心理学)
神经科学
心理学
医学
病理
物理
热力学
作者
A. K. Mittal,John Kalkhof,Anirban Mukhopadhyay,Arnav Bhavsar
出处
期刊:Cornell University - arXiv
日期:2025-01-05
标识
DOI:10.48550/arxiv.2501.02447
摘要
Denoising Diffusion Models (DDMs) are widely used for high-quality image generation and medical image segmentation but often rely on Unet-based architectures, leading to high computational overhead, especially with high-resolution images. This work proposes three NCA-based improvements for diffusion-based medical image segmentation. First, Multi-MedSegDiffNCA uses a multilevel NCA framework to refine rough noise estimates generated by lower level NCA models. Second, CBAM-MedSegDiffNCA incorporates channel and spatial attention for improved segmentation. Third, MultiCBAM-MedSegDiffNCA combines these methods with a new RGB channel loss for semantic guidance. Evaluations on Lesion segmentation show that MultiCBAM-MedSegDiffNCA matches Unet-based model performance with dice score of 87.84% while using 60-110 times fewer parameters, offering a more efficient solution for low resource medical settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI