Automatic Quantification of Serial PET/CT Images for Pediatric Hodgkin Lymphoma Using a Longitudinally Aware Segmentation Network

医学 核医学 放射科
作者
Xin Tie,Muheon Shin,Changhee Lee,Scott B. Perlman,Zachary Huemann,Amy J. Weisman,Sharon M. Castellino,Kara M. Kelly,Kathleen M. McCarten,Adina Alazraki,Junjie Hu,Steve Y. Cho,Tyler Bradshaw
出处
期刊:Radiology [Radiological Society of North America]
被引量:4
标识
DOI:10.1148/ryai.240229
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a longitudinally-aware segmentation network (LAS-Net) that can quantify serial PET/CT images for pediatric patients with Hodgkin lymphoma. Materials and Methods This retrospective study included baseline (PET1) and interim (PET2) PET/CT images from 297 pediatric patients enrolled in two Children’s Oncology Group clinical trials (AHOD1331 and AHOD0831). The internal dataset included 200 patients (enrolled between March 2015-August 2019; median age, 15.4 [IQR: 5.6, 22.0] years; 107 male), and the external testing dataset included 97 patients (enrolled between December 2009-January 2012; median age, 15.8 [IQR: 5.2, 21.4] years; 59 male). LAS-Net incorporates longitudinal cross-attention, allowing relevant features from PET1 to inform the analysis of PET2. The model’s lesion segmentation performance on PET1 images was evaluated using Dice coefficients and lesion detection performance on PET2 images was evaluated using F1 scores. Additionally, quantitative PET metrics, including metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in PET1, as well as qPET and ∆SUVmax in PET2, were extracted and compared against physician-derived measurements. Agreement between model and physician-derived measurements was quantified using Spearman correlation, and bootstrap resampling was employed for statistical analysis. Results LAS-Net detected residual lymphoma on PET2 scans with an F1 score of 0.61 (precision/recall: 0.62/0.60), outperforming all comparator methods ( P < .01). For baseline segmentation, LAS-Net achieved a mean Dice score of 0.77. In PET quantification, LAS-Net’s measurements of qPET, ∆SUVmax, MTV and TLG were strongly correlated with physician measurements, with Spearman’s ρ values of 0.78, 0.80, 0.93 and 0.96, respectively. The quantification performance remained high, with a slight decrease, in an external testing cohort. Conclusion LAS-Net demonstrated significant improvements in quantifying PET metrics across serial scans in pediatric patients with Hodgkin lymphoma, highlighting the value of longitudinal awareness in evaluating multitime-point imaging datasets. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小林很努力完成签到 ,获得积分10
1秒前
我还是做条鱼吧完成签到,获得积分10
1秒前
2秒前
啦啦发布了新的文献求助10
2秒前
xun应助平平无奇小天才采纳,获得10
2秒前
研友_VZG7GZ应助眼泪成诗采纳,获得10
3秒前
3秒前
4秒前
包容的千兰完成签到,获得积分10
4秒前
来自二教的神秘力量完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
cc完成签到,获得积分10
7秒前
LLL发布了新的文献求助10
7秒前
SciGPT应助nnnd77采纳,获得10
7秒前
猪猪hero应助雪山飞龙采纳,获得10
8秒前
33发布了新的文献求助10
9秒前
9秒前
richma完成签到,获得积分10
9秒前
NexusExplorer应助啦啦采纳,获得10
9秒前
Q777发布了新的文献求助10
10秒前
10秒前
岁月静好发布了新的文献求助10
11秒前
12秒前
orixero应助LLL采纳,获得10
13秒前
14秒前
小绵羊发布了新的文献求助10
15秒前
斯文败类应助NYY987654321采纳,获得20
16秒前
S123发布了新的文献求助10
16秒前
17秒前
17秒前
zm完成签到,获得积分10
19秒前
LLL完成签到,获得积分10
20秒前
20秒前
科研小白鼠完成签到,获得积分10
22秒前
李健应助淡泊宁静采纳,获得10
22秒前
23秒前
lym发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4702247
求助须知:如何正确求助?哪些是违规求助? 4070257
关于积分的说明 12585201
捐赠科研通 3770372
什么是DOI,文献DOI怎么找? 2082428
邀请新用户注册赠送积分活动 1109809
科研通“疑难数据库(出版商)”最低求助积分说明 987954