声学
光声成像
超声成像
超声波
超声成像
平面波
声波
平面(几何)
材料科学
光学
物理
几何学
数学
作者
Yijia Liu,Na Jiang,Zhifei Dai,Miaomiao Zhang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control
[Institute of Electrical and Electronics Engineers]
日期:2025-01-01
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2025.3541113
摘要
Plane Wave Imaging (PWI) is pivotal in medical ultrasound, prized for its ultrafast capabilities essential for real-time physiological monitoring. Traditionally, enhancing image quality in PWI has necessitated an increase in the number of plane waves, unfortunately compromising its hallmark high frame rates. To fully leverage the frame rate advantage of PWI, existing deep-learning-based methods often employ single-plane wave (PW) as the sole input for training strategies to replicate multi-PWs compounding results. However, these typically fail to capture the intricate information provided by steered waves. In response, we have developed a sophisticated architecture that implicitly integrates multi-angle information by generating and dynamically combining virtual steered plane waves within the network. Employing deep learning techniques, this system creates virtual steered waves from the single primary input view, simulating a limited number of steering angles. These virtual PWs are then expertly merged with actual single PW data through an advanced attention mechanism. Through implicit multi-angle acoustic synthesis, our approach achieves the high-quality output typically associated with extensive multi-angle compounding. Rigorously evaluated on datasets acquired from simulations, experimental phantoms, and in vivo targets, our method has demonstrated superior performance over traditional single-plane wave strategies by providing more stable, reliable, and robust imaging outcomes. It excels in restoring detailed speckle patterns and diagnostic characteristics crucial for in vivo imaging, thereby offering a promising advancement in PWI technology without sacrificing speed. The code of the network is publicly available at https://github.com/yijiaLiu12/Implicit-Plane-Wave-Synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI