Advancing Single-Plane Wave Ultrasound Imaging with Implicit Multi-Angle Acoustic Synthesis via Deep Learning

声学 光声成像 超声成像 超声波 超声成像 平面波 声波 平面(几何) 材料科学 光学 物理 几何学 数学
作者
Yijia Liu,Na Jiang,Zhifei Dai,Miaomiao Zhang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2025.3541113
摘要

Plane Wave Imaging (PWI) is pivotal in medical ultrasound, prized for its ultrafast capabilities essential for real-time physiological monitoring. Traditionally, enhancing image quality in PWI has necessitated an increase in the number of plane waves, unfortunately compromising its hallmark high frame rates. To fully leverage the frame rate advantage of PWI, existing deep-learning-based methods often employ single-plane wave (PW) as the sole input for training strategies to replicate multi-PWs compounding results. However, these typically fail to capture the intricate information provided by steered waves. In response, we have developed a sophisticated architecture that implicitly integrates multi-angle information by generating and dynamically combining virtual steered plane waves within the network. Employing deep learning techniques, this system creates virtual steered waves from the single primary input view, simulating a limited number of steering angles. These virtual PWs are then expertly merged with actual single PW data through an advanced attention mechanism. Through implicit multi-angle acoustic synthesis, our approach achieves the high-quality output typically associated with extensive multi-angle compounding. Rigorously evaluated on datasets acquired from simulations, experimental phantoms, and in vivo targets, our method has demonstrated superior performance over traditional single-plane wave strategies by providing more stable, reliable, and robust imaging outcomes. It excels in restoring detailed speckle patterns and diagnostic characteristics crucial for in vivo imaging, thereby offering a promising advancement in PWI technology without sacrificing speed. The code of the network is publicly available at https://github.com/yijiaLiu12/Implicit-Plane-Wave-Synthesis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
许中天发布了新的文献求助10
1秒前
Zoo应助晴栀采纳,获得20
1秒前
英姑应助晴栀采纳,获得10
1秒前
ValX发布了新的文献求助10
2秒前
孙兆杰完成签到,获得积分10
2秒前
2秒前
ling发布了新的文献求助10
3秒前
阿辉完成签到,获得积分10
3秒前
口腔飞飞发布了新的文献求助100
3秒前
haha发布了新的文献求助10
4秒前
euphoria完成签到,获得积分10
4秒前
4秒前
情怀应助soki采纳,获得10
5秒前
huajianjiuxing完成签到,获得积分10
5秒前
5秒前
机灵的安青完成签到,获得积分10
6秒前
liuniuliannian完成签到,获得积分10
6秒前
JIECHENG完成签到 ,获得积分10
6秒前
登山人完成签到,获得积分10
6秒前
山海发布了新的文献求助10
6秒前
七星嘿咻完成签到,获得积分10
7秒前
桃子完成签到 ,获得积分10
7秒前
7秒前
郜幼枫发布了新的文献求助10
7秒前
wgcheng发布了新的文献求助10
8秒前
桐桐应助负责的方盒采纳,获得30
8秒前
孟孟完成签到,获得积分10
9秒前
归尘发布了新的文献求助30
9秒前
bjr完成签到 ,获得积分10
9秒前
10秒前
WSS发布了新的文献求助10
10秒前
10秒前
动听海秋发布了新的文献求助10
10秒前
Orange应助研友_8WqK7n采纳,获得10
11秒前
顺利寻菡完成签到,获得积分10
11秒前
zhangw发布了新的文献求助10
12秒前
12秒前
Orange应助QQQQ采纳,获得10
13秒前
黄萱完成签到,获得积分10
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4223717
求助须知:如何正确求助?哪些是违规求助? 3756984
关于积分的说明 11809369
捐赠科研通 3419103
什么是DOI,文献DOI怎么找? 1876499
邀请新用户注册赠送积分活动 930183
科研通“疑难数据库(出版商)”最低求助积分说明 838385