已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Tool Wear State Identification Method Based on Cutting Force Signal

转化(遗传学) 小波变换 计算机科学 鉴定(生物学) 变压器 过程(计算) 人工智能 刀具磨损 信号(编程语言) 小波 工程类 模式识别(心理学) 机械加工 机械工程 电压 操作系统 电气工程 基因 化学 生物 程序设计语言 植物 生物化学
作者
Shuhang Li,Meiqiu Li,Yingning Gao
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (3): 662-662
标识
DOI:10.3390/s25030662
摘要

The objective of this study is to accurately, expeditiously, and efficiently identify the wear state of milling cutters. To this end, a state identification method is proposed that combines continuous wavelet transform and an improved MobileViT lightweight network. The methodology involves the transformation of the cutting force signal during the milling cutter cutting process into a time–frequency image by continuous wavelet transform. This is followed by the introduction of a Contextual Transformer module after layer 1 and the embedding of a Global Attention Mechanism module after layer 2 of the MobileViT network structure. These modifications are intended to enhance visual representation capability, reduce information loss, and improve the interaction between global features. The result is an improvement in the overall performance of the model. The improved MobileViT network model was shown to enhance accuracy, precision, recall, and F1 score by 1.58%, 1.23%, 1.92%, and 1.57%, respectively, in comparison with the original MobileViT. The experimental results demonstrate that the proposed model in this study exhibits a substantial advantage in terms of memory occupation and prediction accuracy in comparison to models such as VGG16, ResNet18, and Pool Former. This study proposes an efficient identification method for milling cutter wear state identification, which can identify the tool wear state in near real-time. The proposed method has potential applications in the field of industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
wbh发布了新的文献求助10
9秒前
9秒前
科研通AI5应助jjmm采纳,获得10
10秒前
10秒前
小美最棒完成签到,获得积分10
10秒前
雨木目完成签到,获得积分10
12秒前
吉恩发布了新的文献求助10
12秒前
13秒前
founder完成签到,获得积分10
13秒前
founder发布了新的文献求助30
15秒前
科研通AI2S应助wbh采纳,获得10
16秒前
华仔应助DWH采纳,获得10
16秒前
Owen应助微微采纳,获得10
20秒前
重要幻梅应助灯飞采纳,获得10
23秒前
悦悦应助吉恩采纳,获得10
23秒前
24秒前
Liufgui应助霸气的人生采纳,获得10
24秒前
残月初升完成签到,获得积分10
24秒前
28秒前
Rose完成签到,获得积分10
29秒前
yuko发布了新的文献求助10
30秒前
30秒前
31秒前
34秒前
wcz发布了新的文献求助10
34秒前
jjmm发布了新的文献求助10
35秒前
xxxxxxlp完成签到,获得积分10
36秒前
36秒前
DWH发布了新的文献求助10
37秒前
赘婿应助科研通管家采纳,获得10
39秒前
爆米花应助科研通管家采纳,获得10
39秒前
39秒前
赘婿应助科研通管家采纳,获得10
39秒前
39秒前
思源应助科研通管家采纳,获得20
39秒前
39秒前
39秒前
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994362
求助须知:如何正确求助?哪些是违规求助? 3534806
关于积分的说明 11266549
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806427
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749