Prediction of amyloid and tau status in nondemented older adults using tree‐based ensemble models

淀粉样蛋白(真菌学) 心理学 树(集合论) 医学 数学 病理 数学分析
作者
Young‐Hoon Seo,Hwamee Oh
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:20 (S2)
标识
DOI:10.1002/alz.090593
摘要

Abstract Background Predicting amyloid and tau status in nondemented older adults with AD pathologies using more affordable and accessible measures can facilitate clinical trials by reducing the screen failure rate. The goal of the present study was to develop tree‐based ensemble models to predict PET‐based amyloid and tau burden using non‐invasive measures. Method Two datasets, amyloid (Aβ; n = 1062) and tau (n = 410), from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database were used to predict the biomarker load in the subjects with normal cognition and mild cognitive impairment. Amyloid PET with the [18F]Florbetapir tracer was used as the gold‐standard measure for binary amyloid status classification), while tau PET with the [18F]Flortaucipir tracer was used for the three‐stage (low, intermediate, and high) determination. We trained random forest (RF), extreme gradient boosting machine (XGBoost), and light gradient boosting machine (lightGBM) models using different combinations of demographic, neuropsychological, APOE genotype, and volumetric MRI data, and measured the model performance using area under the receiver operating curve (AUROC). Result The performance of baseline model with demographics showed modest performance for Aβ (RF = 0.665, XGB = 0.650, LGBM = 0.659). Subsequent additions of features improved the predictive performance, with the model using demographic data, cognitive data, and volumetric MRI measures demonstrating the highest performance (RF = 0.762, XGB = 0.763, LGBM = 0.761). Meanwhile, the baseline model achieved modest performance for the three‐stage tau classification (RF = 0.643, XGB = 0.654, LGBM = 0.643), and the further addition of features improved the performance, with the feature combination of demographic data, cognitive, volumetric MRI measures, and continuous Aβ PET SUVRs achieving very good performance (RF = 0.799, XGB = 0.801, LGBM = 0.800). SHAP summary plots showed that age, entorhinal cortex volume, and neuropsychological and functional measures were important for Aβ classification, while Aβ load, high global cognition scores, hippocampal and middle temporal gyrus volume were shown to predict tau status. Conclusion Without using amyloid and tau PET, tree‐based ensemble machine learning models predict amyloid and tau status among nondemented older adults with modest to very good performance and could be incorporated for future clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小松鼠完成签到 ,获得积分10
2秒前
3秒前
5秒前
6秒前
丘比特应助杨冰采纳,获得10
6秒前
菜虚鲲发布了新的文献求助10
6秒前
动漫大师发布了新的文献求助20
6秒前
7秒前
肉脸小鱼发布了新的文献求助10
7秒前
自由的雁完成签到,获得积分10
7秒前
kk完成签到,获得积分10
8秒前
CipherSage应助always采纳,获得10
9秒前
10秒前
小小小新完成签到,获得积分10
10秒前
strug783发布了新的文献求助10
11秒前
小小小新发布了新的文献求助10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
chenyi应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
13秒前
六十一完成签到,获得积分10
14秒前
木云浅夏发布了新的文献求助10
16秒前
17秒前
南瓜猪猪头完成签到 ,获得积分10
18秒前
19秒前
19秒前
哈哈完成签到,获得积分10
21秒前
xunlei发布了新的文献求助10
21秒前
科目三应助肉脸小鱼采纳,获得10
22秒前
jianglili发布了新的文献求助10
22秒前
Hello应助小小小新采纳,获得10
23秒前
14发布了新的文献求助10
24秒前
25秒前
27秒前
27秒前
28秒前
绝尘发布了新的文献求助10
29秒前
29秒前
strug783完成签到,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780270
求助须知:如何正确求助?哪些是违规求助? 3325566
关于积分的说明 10223524
捐赠科研通 3040706
什么是DOI,文献DOI怎么找? 1668974
邀请新用户注册赠送积分活动 798936
科研通“疑难数据库(出版商)”最低求助积分说明 758634