Application of Multi-layer Information Fusion and Optimization Network Combined with Attention Mechanism in Polyp Segmentation

机制(生物学) 计算机科学 图层(电子) 分割 人工智能 材料科学 认识论 哲学 复合材料
作者
Jinghui Chu,Y. Y. Wang,Qi Tian,Wei Lü
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tim.2025.3527621
摘要

Colorectal cancer is a multifaceted disease, but it can be effectively prevented through colonoscopy for the detection of polyps. In clinical practice, the development of automatic polyp segmentation techniques for colonoscopy images can significantly enhance the efficiency and accuracy of polyp detection, and help clinicians to precisely localize the polyps. However, existing segmentation methods have several obvious limitations: (1) inadequate utilization of multi-level features extracted by feature encoders, (2) ineffective aggregation of high-level and low-level features, and (3) unclear delineation of polyp boundaries. To address these challenges while enhancing the clarity of polyp boundaries in segmentation, we propose a novel Multi-layer Information Fusion and Optimization Network (MIFONet) consisting of the following components: (1) Contextual and Fine Feature Processing (CFFP) module, employed to effectively extract both local and global contextual information, (2) Hierarchical Feature Integration Module (HFIM), added to facilitate efficient aggregation of processed high-level and low-level features and strengthen the association between contextual features, (3) Multi-Scale Contextual Attention (MSCA) module, used to deeply integrate aggregated high-level features with low-level features, and (4) a novel refinement module composed of an Adaptive Channel Attention Pyramid (ACAP) part and a Skip-Reverse Attention (SRA) part, with the ability of capturing fine-grained information and refining feature representation. We conducted extensive experiments and comparative analysis of our proposed model with 19 popular or state-of-the-art (SOTA) methods on five renowned polyp benchmark datasets. To further validate the model's generalization performance, we also designed three cross-dataset experiments. Experimental results demonstrate that MIFONet consistently achieves excellent segmentation performance across most datasets. Especially, we achieve 94.6% mean Dice on CVC-ClinicDB dataset which obtains the superior performance compared with SOTA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen发布了新的文献求助10
1秒前
3秒前
6秒前
lmq完成签到,获得积分10
7秒前
汉堡包应助LP采纳,获得10
8秒前
pengyukun完成签到,获得积分10
13秒前
15秒前
qq完成签到,获得积分10
15秒前
16秒前
日出完成签到,获得积分10
16秒前
潇洒的秋荷完成签到,获得积分10
17秒前
大个应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
18秒前
water应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
饼子发布了新的文献求助10
19秒前
19秒前
日出发布了新的文献求助10
20秒前
从容小鸽子完成签到,获得积分10
22秒前
啃猫爪发布了新的文献求助10
24秒前
汉堡怪兽完成签到,获得积分10
24秒前
25秒前
End发布了新的文献求助10
30秒前
30秒前
思源应助xiaoxiao采纳,获得10
31秒前
coolkid应助啃猫爪采纳,获得10
33秒前
所所应助啃猫爪采纳,获得10
33秒前
34秒前
SYLH应助和功耗过高采纳,获得10
34秒前
xiaoxu完成签到,获得积分10
35秒前
杳鸢应助ramon采纳,获得10
36秒前
黄花花完成签到 ,获得积分20
38秒前
8R60d8应助IMXIAOXIN采纳,获得10
39秒前
1900yjw完成签到,获得积分10
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3945099
求助须知:如何正确求助?哪些是违规求助? 3490051
关于积分的说明 11054827
捐赠科研通 3221043
什么是DOI,文献DOI怎么找? 1780381
邀请新用户注册赠送积分活动 865347
科研通“疑难数据库(出版商)”最低求助积分说明 799850