Advancing precision agriculture with deep learning enhanced SIS-YOLOv8 for Solanaceae crop monitoring

茄科 作物 农业 生物 生物技术 农学 环境科学 生态学 生物化学 基因
作者
Ruijun Qin,Yiming Wang,Xiaoping Xiao,Helong Yu
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1485903
摘要

Potatoes and tomatoes are important Solanaceae crops that require effective disease monitoring for optimal agricultural production. Traditional disease monitoring methods rely on manual visual inspection, which is inefficient and prone to subjective bias. The application of deep learning in image recognition has led to object detection models such as YOLO (You Only Look Once), which have shown high efficiency in disease identification. However, complex climatic conditions in real agricultural environments challenge model robustness, and current mainstream models struggle with accurate recognition of the same diseases across different plant species. This paper proposes the SIS-YOLOv8 model, which enhances adaptability to complex agricultural climates by improving the YOLOv8 network structure. The research introduces three key modules: 1) a Fusion-Inception Conv module to improve feature extraction against complex backgrounds like rain and haze; 2) a C2f-SIS module incorporating Style Randomization to enhance generalization ability for different crop diseases and extract more detailed disease features; and 3) an SPPF-IS module to boost model robustness through feature fusion. To reduce the model's parameter size, this study employs the Dep Graph pruning method, significantly decreasing parameter volume by 19.9% and computational load while maintaining accuracy. Experimental results show that the SIS-YOLOv8 model outperforms the original YOLOv8n model in disease detection tasks for potatoes and tomatoes, with improvements of 8.2% in accuracy, 4% in recall rate, 5.9% in mAP50, and 6.3% in mAP50-95. Through these network structure optimizations, the SIS-YOLOv8 model demonstrates enhanced adaptability to complex agricultural environments, offering an effective solution for automatic crop disease detection. By improving model efficiency and robustness, our approach not only advances agricultural disease monitoring but also contributes to the broader adoption of AI-driven solutions for sustainable crop management in diverse climates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
momo发布了新的文献求助10
2秒前
科研通AI2S应助天空采纳,获得10
2秒前
3秒前
甜甜圈完成签到 ,获得积分10
3秒前
mmr完成签到,获得积分10
3秒前
淳于笑翠发布了新的文献求助30
4秒前
猴哥完成签到,获得积分10
4秒前
lyy完成签到 ,获得积分10
4秒前
傢誠发布了新的文献求助30
5秒前
shaodan发布了新的文献求助10
5秒前
科研圣手完成签到,获得积分10
6秒前
契阔完成签到 ,获得积分10
7秒前
在水一方应助陈丽荣采纳,获得10
8秒前
joe_liu发布了新的文献求助10
8秒前
9秒前
科研通AI5应助feiying88采纳,获得10
9秒前
上官若男应助小新采纳,获得10
9秒前
10秒前
科研通AI5应助杨惠文采纳,获得10
11秒前
13秒前
13秒前
鲸鱼打滚完成签到 ,获得积分10
13秒前
ling22发布了新的文献求助10
13秒前
SciGPT应助历史真相采纳,获得10
14秒前
奋斗的暖阳完成签到,获得积分10
14秒前
淳于笑翠完成签到,获得积分10
15秒前
长弓橙子发布了新的文献求助10
16秒前
LSJ发布了新的文献求助10
16秒前
CX330完成签到,获得积分10
16秒前
陈丽荣完成签到,获得积分20
17秒前
Turning完成签到,获得积分10
17秒前
小明发布了新的文献求助10
18秒前
黄丽发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
科研助手6应助心神依然采纳,获得10
21秒前
21秒前
天天快乐应助斑其采纳,获得10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793241
求助须知:如何正确求助?哪些是违规求助? 3337977
关于积分的说明 10288036
捐赠科研通 3054558
什么是DOI,文献DOI怎么找? 1676014
邀请新用户注册赠送积分活动 804038
科研通“疑难数据库(出版商)”最低求助积分说明 761715