清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

USING AI APPROACHES FOR PREDICTING BRAIN AGEING CHANGES IN SCHIZOPHRENIA

精神分裂症(面向对象编程) 心理学 老化 神经科学 认知心理学 人工智能 精神科 计算机科学 医学 内科学
作者
Lan-Ying Huang,Hung-Bo Hsiao,Ziyi Lin,Chi-Wei Chen,Yen-Wei Chu
出处
期刊:The International Journal of Neuropsychopharmacology [University of Oxford]
卷期号:28 (Supplement_1): i80-i81
标识
DOI:10.1093/ijnp/pyae059.139
摘要

Abstract Background Schizophrenia is a severe mental disorder that causes structural and functional abnormalities in the brain. It affects approximately 1% of the global population and has the highest prevalence and most complex symptoms among chronic mental illnesses. Numerous studies on schizophrenia patients have shown a trend of reduced total intracranial volume (TIV) and regional volumes (volumes of different tissue categories), particularly a decrease in gray matter (GM). It is still unclear whether the decrease in brain volume is associated with age-related changes seen in normal individuals or represents processes specific to individuals, such as those occurring at the onset of the disease, genetic factors, diet, and lifestyle. Aims & Objectives Previous studies have held different views on whether schizophrenia is associated with more severe age-related cognitive decline. Until recently, longitudinal studies examining cognitive decline have been lacking. In recent years, brain age prediction has emerged as a neurobiological marker of brain degeneration. Method The brain age gap (BrainAGE) model assesses the difference between the biological age of the brain and the actual age, with higher values indicating accelerated brain aging. This study utilizes neuroimaging data to evaluate BrainAGE and explore the rate of brain aging in individuals across different age groups. A total of 767 structural MRI data were collected from four public MRI datasets (COBRE, MCICShare, UCLA, NUSDAST) consisting of both schizophrenia patients and healthy controls. We constructed the BrainAGE deep learning model using data from the healthy control group. Results This model was trained based on brain images from healthy individuals, and the predicted outcome is represented as an age number, referred to as Brain Age Prediction. It can be applied to predict the brain images of schizophrenia patients. Finally, we used data from schizophrenia patients to provide insights into the brain age aging assessment for individuals with schizophrenia. Discussion & Conclusion In conclusion, this study is using deep learning to establish a predictive health brain age model and also apply it to evaluate the brain age of participants with schizophrenia patients. Moreover, several aspects of this study are worth further research and development. To begin with, the study collected brain imaging data from public databases in schizophrenia research and also used brain imaging data from healthy individuals for training. It is lead to the health control brain imaging data in limited. The problem is able to collect brain imaging data from healthy participants in other research and increase the datasets in our study. Additionally, transfer learning will be used. Transfer learning can use similar data for pre-training, assisting in training models with limited training data. Consequently, the study focuses on exploring the differences in volume and thickness of different brain regions between healthy individuals and schizophrenia patients in T1-weighted images. On the other hand, functional MRI and diffusion tensor imaging (DTI) have also been applied in artificial intelligence in recent years. Therefore, this study will attempt to establish a brain age prediction model using a multimodal in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
小鱼女侠发布了新的文献求助10
8秒前
毛毛弟完成签到 ,获得积分10
20秒前
Lyn完成签到,获得积分10
20秒前
25秒前
小鱼女侠发布了新的文献求助10
26秒前
等等完成签到 ,获得积分10
28秒前
FIN应助Lyn采纳,获得30
28秒前
tianshanfeihe完成签到 ,获得积分10
36秒前
39秒前
番茄小超人2号完成签到 ,获得积分10
51秒前
小鱼女侠发布了新的文献求助10
54秒前
神勇的天问完成签到 ,获得积分10
57秒前
独特纸飞机完成签到 ,获得积分10
1分钟前
牵绊完成签到 ,获得积分10
1分钟前
葫芦芦芦完成签到 ,获得积分10
1分钟前
DJ_Tokyo完成签到,获得积分0
1分钟前
Dr-Luo完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
yana发布了新的文献求助10
1分钟前
1分钟前
TEMPO完成签到 ,获得积分10
1分钟前
wbh发布了新的文献求助10
1分钟前
小程完成签到 ,获得积分10
1分钟前
初陽完成签到,获得积分20
1分钟前
jintian完成签到 ,获得积分10
2分钟前
2分钟前
田田完成签到 ,获得积分10
2分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
科研佟完成签到 ,获得积分10
2分钟前
ommphey完成签到 ,获得积分10
2分钟前
2分钟前
cuncaoxin完成签到,获得积分10
2分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
猫的毛完成签到 ,获得积分10
2分钟前
cuncaoxin发布了新的文献求助10
2分钟前
Lynn完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
rockyshi完成签到 ,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008573
求助须知:如何正确求助?哪些是违规求助? 3548261
关于积分的说明 11298724
捐赠科研通 3282959
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218