Comparisons of deep learning and machine learning while using text mining methods to identify suicide attempts of patients with mood disorders

人工智能 支持向量机 机器学习 麦克内马尔试验 心情 逻辑回归 子群分析 接收机工作特性 情绪障碍 卷积神经网络 计算机科学 心理学 统计 医学 精神科 内科学 数学 焦虑 荟萃分析
作者
Xiaonan Wang,Changchang Wang,Jiangyue Yao,Hua Fan,Qian Wang,Yue Ren,Qi Gao
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:317: 107-113 被引量:6
标识
DOI:10.1016/j.jad.2022.08.054
摘要

Suicide attempt is one of the most severe consequences for patients with mood disorders. This study aimed to perform deep learning and machine learning while using text mining to identify patients with suicide attempts and to compare their effectiveness.A total of 13,100 patients with mood disorders were selected. Two traditional text mining methods, logistic regression and Support vector machine (SVM), and one deep learning model (Convolutional neural network, CNN) were adopted to perform overall analysis and gender-specific subgroup analysis of patients to identify suicide attempts. The classification effectiveness of these models was evaluated by accuracy, F1-value, precision, recall, and the area under Receiver operator characteristic curve (ROC).CNN's results were greater than the other two for all indicators except recall which was slightly smaller than SVM in male subgroup analysis. The accuracy values of the CNN were 98.4 %, 98.2 %, and 98.5 % in the overall analysis and the subgroup analysis for males and females, respectively. The results of McNemar's test showed that CNN and SVM models' predictions were statistically different from the logistic regression model's predictions in the overall analysis and the subgroup analysis for females (P < 0.050).A fixed number of features were selected based on document frequency to train models; this was a single-site study.CNN model was a better way to detect suicide attempts in patients with mood disorders prior to hospital admission, saving time and resources in recognizing high-risk patients and preventing suicide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨中客完成签到,获得积分10
刚刚
谷鸿飞发布了新的文献求助10
1秒前
1秒前
SDM完成签到 ,获得积分10
2秒前
wjw完成签到,获得积分10
2秒前
科研狂魔应助布雨采纳,获得10
2秒前
2秒前
hao完成签到,获得积分10
3秒前
mmb完成签到,获得积分10
3秒前
mufulee完成签到,获得积分10
3秒前
扬帆起航完成签到 ,获得积分10
3秒前
meo发布了新的文献求助10
4秒前
Leisure_Lee完成签到,获得积分10
4秒前
852应助klay777采纳,获得10
4秒前
4秒前
盛宇大天才应助hh采纳,获得10
4秒前
sssssssssss完成签到,获得积分10
5秒前
顺利毕业完成签到 ,获得积分10
5秒前
周声声发布了新的文献求助10
6秒前
随影相伴完成签到 ,获得积分10
6秒前
6秒前
7秒前
111123123123完成签到 ,获得积分10
7秒前
嘻嘻印完成签到,获得积分10
7秒前
凌晨五点的完成签到,获得积分10
7秒前
鲸鱼完成签到 ,获得积分10
7秒前
heavenhorse完成签到,获得积分0
7秒前
lyz发布了新的文献求助10
8秒前
neao完成签到,获得积分10
9秒前
冬瓜有内涵呐完成签到,获得积分10
9秒前
金开完成签到,获得积分10
9秒前
崩坏的幻想完成签到,获得积分10
10秒前
哈哈呀完成签到 ,获得积分10
10秒前
冰冷天蝎座完成签到,获得积分10
10秒前
冷酷青枫给冷酷青枫的求助进行了留言
10秒前
义气的慕卉完成签到,获得积分10
10秒前
俭朴的乐巧完成签到 ,获得积分20
11秒前
444完成签到,获得积分10
11秒前
甜美的夏之完成签到,获得积分10
11秒前
天真的嚓茶完成签到,获得积分10
11秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830672
求助须知:如何正确求助?哪些是违规求助? 3372994
关于积分的说明 10476648
捐赠科研通 3093056
什么是DOI,文献DOI怎么找? 1702310
邀请新用户注册赠送积分活动 818920
科研通“疑难数据库(出版商)”最低求助积分说明 771153